- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)设函数
.0
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的
不等式| f′(x)|≤a恒成立,求a的取值范围.

(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的

(本小题满分12分)已知函数
(
为常数)的图像与
轴交于点
,曲线
在点
处的切线斜率为-1.
(1)求
的值及函数
的极值; (2)证明:当
时,
。






(1)求




(本题满分16分)已知函数
,(
为常数,
为自然对数的底).
(1)令
,
,求
和
;
(2)若函数
在
时取得极小值,试确定
的取值范围;
(3)在(2)的条件下,设由
的极大值构成的函数为
,试判断曲线
只可能与直线
、
(
,
为确定的常数)中的哪一条相切,并说明理由.



(1)令




(2)若函数



(3)在(2)的条件下,设由






