- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- + 导数的综合应用
- 导数在函数中的其他应用
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,在
时取得极值.
(Ⅰ)求函数
的解析式;
(Ⅱ)若
时,
恒成立,求实数m的取值范围;
(Ⅲ)若
,是否存在实数b,使得方程
在区间
上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.


(Ⅰ)求函数

(Ⅱ)若


(Ⅲ)若



已知函数f(x)=x2+2mx+2lnx,m∈R.
(1)探究函数f(x)的单调性;
(2)若关于x的不等式f(x)≤2
+3x2在(0,+∞)上恒成立,求m的取值范围.
(1)探究函数f(x)的单调性;
(2)若关于x的不等式f(x)≤2
