- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- + 导数的综合应用
- 导数在函数中的其他应用
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一工厂计划生产某种当地政府控制产量的特殊产品,月固定成本为1万元,设此工厂一个月内生产该特殊产品
万件并全部销售完.根据当地政府要求产量
满足
,每生产
件需要再投入
万元,每1万件的销售收入为
(万元),且每生产1万件产品政府给予补助
(万元).(注:月利润=月销售收入+月政府补助-月总成本).
(1)写出月利润
(万元)关于月产量
(万件)的函数解析式;
(2)求该工厂在生产这种特殊产品中所获得的月利润最大值(万元)及此时的月生产量(万件)







(1)写出月利润


(2)求该工厂在生产这种特殊产品中所获得的月利润最大值(万元)及此时的月生产量(万件)
已知函数f(x)=lnx﹣ax+a,a∈R.
(1)求f(x)的单调区间;
(2)当x≥1时,恒有g(x)=(x+1)f(x)﹣lnx≤0恒成立,求a的取值范围.
(1)求f(x)的单调区间;
(2)当x≥1时,恒有g(x)=(x+1)f(x)﹣lnx≤0恒成立,求a的取值范围.
某工厂打算设计一种容积为2m3的密闭容器用于贮藏原料,容器的形状是如图所示的直四棱柱,其底面是边长为x米的正方形,假设该容器的底面及侧壁的厚度均可忽略不计.

(1)请你确定x的值,使得该容器的外表面积最小;
(2)若该容器全部由某种每平方米价格为100元的材料做成,且制作该容器仅需将购置的材料做成符合需要的矩形,这些矩形即是直四棱柱形容器的上下底面和侧面(假设这一过程中产生的费用和材料损耗可忽略不计),再将这些上下底面和侧面的边缘进行焊接即可做成该容器,焊接费用是每米500元,试确定x的值,使得生产每个该种容器的成本(即原料购置成本+焊接费用)最低.

(1)请你确定x的值,使得该容器的外表面积最小;
(2)若该容器全部由某种每平方米价格为100元的材料做成,且制作该容器仅需将购置的材料做成符合需要的矩形,这些矩形即是直四棱柱形容器的上下底面和侧面(假设这一过程中产生的费用和材料损耗可忽略不计),再将这些上下底面和侧面的边缘进行焊接即可做成该容器,焊接费用是每米500元,试确定x的值,使得生产每个该种容器的成本(即原料购置成本+焊接费用)最低.
过函数
的图象
上一点
作倾斜角互补的两条直线,分别与
交与异于
的
,
两点.
(1)求证:直线
的斜率为定值;
(2)如果
,
两点的横坐标均不大于0,求
面积的最大值.







(1)求证:直线

(2)如果



由于近几年我国多地区的雾霾天气,引起口罩热销,某厂家拟在2017年举行促销活动,经调查该批口罩销售量
万件(生产量与销售量相等)与促销费用
万元满足
(其中
,
为常数).已知生产该批口罩还要投入成本
万元(不包含促销费用),口罩的销售价格定为
元/件.
(1)将该批口罩的利润
万元表示为促销费用
万元的函数;
(2)当促销费用投入多少万元时,该厂家的利润最大?







(1)将该批口罩的利润


(2)当促销费用投入多少万元时,该厂家的利润最大?
已知函数
.
(1)若不等式
的解集为
,求不等式
的解集;
(2)
时,
①当
时,若不等式
在
有解,求
的取值范围;
②当
时,设
,若存在
,
,使得
成立,求
的取值范围.

(1)若不等式



(2)

①当




②当





