- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- + 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界,已知函数
.
(Ⅰ)若
是奇函数,求
的值.
(Ⅱ)当
时,求函数
在
上的值域,判断函数
在
上是否为有界函数,并说明理由.
(Ⅲ)若函数
在
上是以
为上界的函数,求实数
的取值范围.










(Ⅰ)若


(Ⅱ)当





(Ⅲ)若函数




已知函数f(x)=loga(
)(0<a<1,b>0)为奇函数,当x∈(﹣1,a]时,函数y=f(x)的值域是(﹣∞,1].
(1)确定b的值;
(2)证明函数y=f(x)在定义域上单调递增,并求a的值;
(3)若对于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范围.

(1)确定b的值;
(2)证明函数y=f(x)在定义域上单调递增,并求a的值;
(3)若对于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范围.
已知函数
定义域是
,且
,
,当
时,
.
(1)证明:
为奇函数;
(2)求
在
上的表达式;
(3)是否存在正整数
,使得
时,
有解,若存在求出
的值,若不存在说明理由.






(1)证明:


(2)求


(3)是否存在正整数



