- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- + 正方形的判定与性质综合
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.
探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:
证明:∵BE=AB,∴AE=2A

问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.
探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:
证明:∵BE=AB,∴AE=2A
A. ∵AD=2AB,∴AD=AE. ∵四边形ABCD是矩形,∴AD∥B | B. ∴ ![]() ∵BE=AB,∴ ![]() 即AM是△ADE的DE边上的中线, 又∵AD=AE,∴AM⊥DE.(依据2) ∴AM垂直平分DE. 反思交流: (1)①上述证明过程中的“依据1”“依据2”分别是指什么? ②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明; (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明; 探索发现: (3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明. |

如图,在△ABC中,AB=400,BC=600,∠ABC=45°,在△ABC内作一个内接矩形DEGF(点E、F在边BC上,点D、G分别在边AB和AC上),则矩形DEFG的对角线EG最短为_____.

如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点

A.若DE=6,则AD的长为___________. |

在习题课上,老师让同学们以课本一道习题“如图1,A,B,C,D四家工厂分别坐落在正方形城镇的四个角上.仓库E和Q分别位于AD和DC上,且ED=QC.证明两条直路BE=AQ且BE⊥AQ.”为背景开展数学探究.
(1)独立思考:将上题条件中的ED=QC去掉,将结论中的BE⊥AQ变为条件,其他条件不变,那么BE=AQ还成立吗?请写出答案并说明理由;
(2)合作交流:“祖冲之”小组的同学受此问题的启发提出:如图2,在正方形ABCD内有一点P,过点P作EF⊥GH,点E、F分别在正方形的对边AD、BC上,点G、H分别在正方形的对边AB、CD上,那么EF与GH相等吗?并说明理由.
(3)拓展应用:“杨辉”小组的同学受“祖冲之”小组的启发,想到了利用图2的结论解决以下问题:
如图3,将边长为10cm的正方形纸片ABCD折叠,使点A落在DC的中点E处,折痕为MN,点N在BC边上,点M在AD边上.请你画出折痕,则折痕MN的长是 ;线段DM的长是 .
(1)独立思考:将上题条件中的ED=QC去掉,将结论中的BE⊥AQ变为条件,其他条件不变,那么BE=AQ还成立吗?请写出答案并说明理由;
(2)合作交流:“祖冲之”小组的同学受此问题的启发提出:如图2,在正方形ABCD内有一点P,过点P作EF⊥GH,点E、F分别在正方形的对边AD、BC上,点G、H分别在正方形的对边AB、CD上,那么EF与GH相等吗?并说明理由.
(3)拓展应用:“杨辉”小组的同学受“祖冲之”小组的启发,想到了利用图2的结论解决以下问题:
如图3,将边长为10cm的正方形纸片ABCD折叠,使点A落在DC的中点E处,折痕为MN,点N在BC边上,点M在AD边上.请你画出折痕,则折痕MN的长是 ;线段DM的长是 .

如图,在Rt△ABC中,∠B=90°,AB=BC,AC=
.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积为( )



A.25. | B.![]() | C.5. | D.10. |
如图,正方形ABCD的面积是64,点F在边AD上,点E在边AB的延长线上.若CE⊥CF,且△CEF的面积是50,则DF的长度是____ .

如图,四边形ABCD为正方形,DE∥AC且CE=CA,直线EC交DA延长线于F.

(1)若CD=6,求DE的长;
(2)求证:AE=AF.

(1)若CD=6,求DE的长;
(2)求证:AE=AF.