- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- + 正方形的判定与性质综合
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(发现)如图,点E,F分别在正方形ABCD的边BC,CD上,连接EF.
因为AB=AD,所以把△ABE绕A逆时针旋转90°至△ADG,可使AB与AD重合.因为∠CDA=∠B=90°,所以∠FDG=180°,所以F、D、G共线.如果______(填一个条件),可得△AEF≌△AGF.经过进一步研究我们可以发现:当BE,EF,FD满足______时,∠EAF=45°.
(应用)
如图,在矩形ABCD中,AB=6,AD=m,点E在边BC上,且BE=2.
(1)若m=8,点F在边DC上,且∠EAF=45°(如图),求DF的长;
(2)若点F在边DC上,且∠EAF=45°,求m的取值范围.
因为AB=AD,所以把△ABE绕A逆时针旋转90°至△ADG,可使AB与AD重合.因为∠CDA=∠B=90°,所以∠FDG=180°,所以F、D、G共线.如果______(填一个条件),可得△AEF≌△AGF.经过进一步研究我们可以发现:当BE,EF,FD满足______时,∠EAF=45°.
(应用)
如图,在矩形ABCD中,AB=6,AD=m,点E在边BC上,且BE=2.
(1)若m=8,点F在边DC上,且∠EAF=45°(如图),求DF的长;
(2)若点F在边DC上,且∠EAF=45°,求m的取值范围.

已知:如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=AD=8cm,CD=10cm,点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为lcm/s.连接PQ,设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,PQ∥AD?
(2)设四边形APQD的面积为y(cm2),求y与t的函数关系式;
(3)是否存在某一时刻t,使S四边形APQO:S四边形BCQP=17:27?若存在,求出t的值,并求此时PQ的长;若不存在,请说明理由.
(1)当t为何值时,PQ∥AD?
(2)设四边形APQD的面积为y(cm2),求y与t的函数关系式;
(3)是否存在某一时刻t,使S四边形APQO:S四边形BCQP=17:27?若存在,求出t的值,并求此时PQ的长;若不存在,请说明理由.

如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEF

A. (1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形. (2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′; (3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值. |

如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG//CF;④S△EFC=
.其中正确结论的是____________(只填序号).


如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.
(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为2
,当∠DOE=15°时,求线段EF的长;
(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,证明:PE=2PF.
(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为2

(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,证明:PE=2PF.

(1)方法回顾
在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;
第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=
B


在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;
第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=

A. (2)问题解决 如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长. (3)拓展研究 如图3,在四边形ABCD中,∠A=100°,∠D=110°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=4,DF= ![]() |


如图,□
的对角线
相交于点
,且AE∥BD,BE∥AC,OE = CD.
(1)求证:四边形ABCD是菱形;
(2)若AD = 2,则当四边形ABCD的形状是_______________时,四边形
的面积取得最大值是_________________.



(1)求证:四边形ABCD是菱形;
(2)若AD = 2,则当四边形ABCD的形状是_______________时,四边形


如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为( )


A.9 | B.8 | C.7 | D.10 |