刷题首页
题库
初中数学
题干
(发现)如图,点
E
,
F
分别在正方形
ABCD
的边
BC
,
CD
上,连接
EF
.
因为
AB
=
AD
,所以把△
ABE
绕
A
逆时针旋转90°至△
ADG
,可使
AB
与
AD
重合.因为∠
CDA
=∠
B
=90°,所以∠
FDG
=180°,所以
F
、
D
、
G
共线.如果______(填一个条件),可得△
AEF
≌△
AGF
.经过进一步研究我们可以发现:当
BE
,
EF
,
FD
满足______时,∠
EAF
=45°.
(应用)
如图,在矩形
ABCD
中,
AB
=6,
AD
=
m
,点
E
在边
BC
上,且
BE
=2.
(1)若
m
=8,点
F
在边
DC
上,且∠
EAF
=45°(如图),求
DF
的长;
(2)若点
F
在边
DC
上,且∠
EAF
=45°,求
m
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-06 05:26:38
答案(点此获取答案解析)
同类题1
四边形
为正方形,点
为线段
上一点,连接
,过点
作
,交射线
于点
,以
、
为邻边作矩形
,连接
.
如图
,求证:矩形
是正方形;
若
,
,求
的长度;
当线段
与正方形
的某条边的夹角是
时,直接写出
的度数.
同类题2
如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
同类题3
如图1,在正方形
中,
是对角线,点
在
上,
是等腰直角三角形,且
,点
是
的中点,连结
与
.
(1)求证:
.
(2)求证:
.
(3)如图2,若等腰直角三角形
绕点
按顺时针旋转
,其他条件不变,请判断
的形状,并证明你的结论.
同类题4
如图,在正方形
ABCD
中,点
P
是
CD
边上一动点,连接
PA
,分别过点
B
、
D
作
BE
⊥
PA
、
DF
⊥
PA
,垂足分别为
E
、
F
,如图①.
(1)请探究
BE
、
DF
、
EF
这三条线段的长度具有怎样的数量关系?并说明理由.
(2)若点
P
在
DC
的延长线上,如图②,那么这三条线段的长度之间又具有怎样的数量关系?直接写出结论.
(3)若点
P
在
CD
的延长线上呢,如图③,直接写出结论.
同类题5
如图,在正方形
ABCD
中,点
E
是
BC
的中点,连接
DE
,过点
A
作
AG
⊥
ED
交
DE
于点
F
,交
CD
于点
G
.
(1)若
BC
=4,求
AG
的长;
(2)连接
BF
,求证:
AB
=
FB
.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明