- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- + 正方形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- 根据正方形的性质求线段长
- 根据正方形的性质求面积
- 正方形折叠问题
- 求正方形重叠部分面积
- 根据正方形的性质证明
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B的对应点E落在坐标平面内,当△ADE是等腰直角三角形时,点E的坐标为______.

如图,G是边长为4的正方形ABCD边上一点,矩形DEFG的边EF经过点A,已知GD=5,则FG为( )


A.3 | B.3.2 | C.4 | D.4.8 |
如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于( )


A.3![]() | B.2![]() | C.3![]() | D.2![]() |
如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AM
A.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1= ▲ .![]() |
如图(1),正方形ABCD和正方形CEFG有一公共点C,且B,C,E在同一直线,连接BG,D


A. (1)请你猜想BG,DE的位置关系和数量关系,并说明理由. (2)若正方形CEFG绕点C按顺时针方向旋转一个角度后,如图(2),BG和DE是否还存在上述关系,并说明理由. |


已知:如图,在正方形ABCD中,AC,BD交于点O,延长CB到点E,使BE=BC,连结DE交AB于点F,若正方形的ABCD的边长为6,则OF的长为_______

将n 个边长都为 2cm 的正方形按如图所示的方法摆放,点A1、A2、…、AN 分别是正方形的中心,则 2019 个这样的正方形重叠部分(阴影部分)的面积和为_____


如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去
记正方形ABCD的边为
,按上述方法所作的正方形的边长依次为
、
、
、
,根据以上规律写出
的表达式______.







