- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- + 菱形的判定与性质综合
- 根据菱形的性质与判定求角度
- 根据菱形的性质与判定求线段长
- 根据菱形的性质与判定求面积
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.

在菱形ABCD中,∠ABC=60°
(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、C

(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、C
A. ①求证:CE⊥AD; ②若AB= ![]() ![]() (2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、D | B.若BE=11,DE=5,求△ADF的面积. |

如图,在
中,对角线BD平分
,过点A作
,交CD的延长线于点E,过点E作
,交BC延长线于点F.

(1)求证:四边形ABCD是菱形;
(2)若
求EF的长.





(1)求证:四边形ABCD是菱形;
(2)若

如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.

如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接O

A. (1)求证:四边形ABCD是菱形; (2)若DC=2 ![]() |

如图,已知直线l//AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABDC的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BC A′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为3
或7.其中正确的是( )



A.①②③④ | B.①③④ | C.①②④ | D.①②③ |
在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.

(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.

(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN是晾衣架的一个滑槽,点P在滑槽MN上,下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为
,且
.(点D是固定点)


(1)当点P向下滑至点N处时,测得
时
①求滑槽MV的长度
②此时点A到直线DP的距离是多少?
(2)当点P向上滑至点M处时,点A在相对于(1)的情况下向左移动的距离是多少?




(1)当点P向下滑至点N处时,测得

①求滑槽MV的长度
②此时点A到直线DP的距离是多少?
(2)当点P向上滑至点M处时,点A在相对于(1)的情况下向左移动的距离是多少?