- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- + 菱形的判定与性质综合
- 根据菱形的性质与判定求角度
- 根据菱形的性质与判定求线段长
- 根据菱形的性质与判定求面积
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:如图,四边形ABCD是菱形,AB=AD.
求证:(1) AB=BC=CD=DA
(2) AC⊥DB
(3) ∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA
求证:(1) AB=BC=CD=DA
(2) AC⊥DB
(3) ∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA

在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠ECA=20°,则∠BDC=_____°.

(1)如图1,在四边形ABCD中,AB=BC=CD=DA=5 cm,BD=8 cm.则AC= cm;
(2)在宽为8 cm 的长方形纸带上,用图1中的四边形设计如图2所示的图案.
①如果用7个图1中的四边形设计图案,那么至少需要 cm长的纸带;
②设图1中的四边形有x个,所需的纸带长为y cm,求y与x之间的函数表达式;
③在长为40 cm的纸带上,按照这种方法,最多能设计多少个图1中的四边形?
(2)在宽为8 cm 的长方形纸带上,用图1中的四边形设计如图2所示的图案.
①如果用7个图1中的四边形设计图案,那么至少需要 cm长的纸带;
②设图1中的四边形有x个,所需的纸带长为y cm,求y与x之间的函数表达式;
③在长为40 cm的纸带上,按照这种方法,最多能设计多少个图1中的四边形?

定义:有一组对角互补的四边形叫做互补四边形,如图,在互补四边形纸片ABCD中,BA=BC,AD=CD,∠A=∠C=90°,∠ADC=30°.将纸片先沿直线BD对折,再将对折后的纸片从一个顶点出发的直线裁剪,把剪开的纸片打开后铺平,若铺平后的纸片中有一个面积为4的平行四边形,则CD的长为__.

如图,在▱ABCD中,对角线AC与BD相交于点O,∠CBD=∠BDC,若DC=10,cos∠BDC=
,则四边形ABCD的面积为( )



A.48 | B.96 | C.100 | D.192 |
如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD=2
, DE=2,则四边形 OCED 的面积为( )



A.2![]() | B.4 | C.4![]() | D.8 |
如图,将两张长为10,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么,菱形周长的最大值为( )


A.![]() | B.![]() | C.![]() | D.21 |
如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为( )


A.14 | B.16 | C.17 | D.18 |
如图1,在矩形ABCD中AB=4, BC=8,点E、F是BC、AD上的点,且BE=D

A. (1)求证:四边形AECF是平行四边形. (2)如果四边形AECF是菱形,求这个菱形的边长. (3)如图2,在(2)的条件下,取AB、CD的中点G、H,连接DG、BH, DG分别交AE、CF于点M、Q, BH分别交AE、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积。 |
