- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- + 菱形的判定与性质综合
- 根据菱形的性质与判定求角度
- 根据菱形的性质与判定求线段长
- 根据菱形的性质与判定求面积
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在□ABCD中,按以下步骤作图:①以点A为圆心,AB的长为半径作弧,交AD于点F;②分别以点F,B为圆心大于
FB的长为半径作弧,两弧在∠DAB内交于点G;③作射线AG,交边BC于点E,连接EF.若AB=5,BF=8,则四边形ABEF的面积为( )



A.12 | B.20 | C.24 | D.48 |
如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E为垂足,连接DF,则∠CDF=( )


A.50° | B.40° | C.30° | D.15° |
如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接B
A.![]() (1)求证:四边形BCDE为菱形; (2)连接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面积. |
如图,已知:AD是△ABC的角平分线,DE//AC交AB于E,DF//AB交AC于F,
(1)求证:四边形AEDF是菱形;
(2)当△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.
(1)求证:四边形AEDF是菱形;
(2)当△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.

如图,点D是Rt△ABC斜边AB的中点,过点B、C分别作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=
,求CD的长;
(2)求证:BC⊥DE.
(1)若∠A=60°,AC=

(2)求证:BC⊥DE.

如图,菱形ABCD中,边CD的中垂线交对角线BD于点E,交CD于点F,连结AE.若∠ABC=50°,则∠AEB的度数为( )


A.30° | B.40° | C.50° | D.60° |