- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- + 菱形的判定
- 添一个条件使已知四边形是菱形
- 证明已知四边形是菱形
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()


A.BA=BC | B.AC、BD互相平分 | C.AC=BD | D.AB∥CD |
已知等腰
中,
,
平分
交
于
点,在线段
上任取一点
(
点除外),过
点作
,分别交
于
点,作
,交
于
点,连结
.
(1)求证:四边形
为菱形;
(2)当
点在何处时,菱形
的面积为四边形
面积的一半?

















(1)求证:四边形

(2)当




如图,在Rt△ABC中,∠ACB=90º,点D、E分别是边AB、AC的中点,延长DE至F,使得AF//CD,连接BF、CF。求证:四边形AFCD是菱形。

如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)探究线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由;
(3)当点O在边AC上运动时,四边形BCFE可能是菱形吗?说明理由.
(1)探究线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由;
(3)当点O在边AC上运动时,四边形BCFE可能是菱形吗?说明理由.

如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点
若四边形EFGH为菱形,则对角线AC、BD应满足条件是






A.![]() | B.![]() |
C.![]() ![]() | D.不确定 |
如图,点B,C分别是锐角
两边上的点,
,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,
则根据作图过程判定四边形ABDC是菱形的依据是








A.一组邻边相等的四边形是菱形 |
B.四边相等的四边形是菱形 |
C.对角线互相垂直的平行四边形是菱形 |
D.对角线平分一组对角的四边形是菱形 |