- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 线性回归
- 误差分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有下列说法:
①若某商品的销售量
(件)关于销售价格
(元/件)的线性回归方程为
,当销售价格为10元时,销售量一定为300件;
②线性回归直线
一定过样本点中心
;
③若两个随机变量的线性相关性越强,则相关系数
的值越接近于1;
④在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;
⑤在线性回归模型中,相关指数
表示解释变量对于预报变量变化的贡献率,
越接近于1,表示回归的效果越好;
其中正确的结论有几个( )
①若某商品的销售量



②线性回归直线


③若两个随机变量的线性相关性越强,则相关系数

④在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;
⑤在线性回归模型中,相关指数


其中正确的结论有几个( )
A.1 | B.2 | C.3 | D.4 |
随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的4个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:
(单位:元/月)和购买总人数
(单位:万人)的关系如表:
(1)根据表中的数据,请用线性回归模型拟合
与
的关系,求出
关于
的回归方程;并估计10元/月的流量包将有多少人购买?
(2)若把50元/月以下(不包括50元)的流量包称为低价流量包,50元以上(包括50元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明是否能在犯错误的概率不超过0.01的前提下,认为购买人的年龄大小与流量包价格高低有关?
参考公式:其中
,
,
.
,其中
参考数据:


定价![]() | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数![]() | 30 | 30 | 10 | 10 |
(1)根据表中的数据,请用线性回归模型拟合




(2)若把50元/月以下(不包括50元)的流量包称为低价流量包,50元以上(包括50元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明是否能在犯错误的概率不超过0.01的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价![]() | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | | | |
中老年人(40岁以及40岁以上) | | | |
总计 | | | |
参考公式:其中





参考数据:
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:
.
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

参考公式及数据:

某手机公司生产某款手机,如果年返修率不超过千分之一,则生产部门当年考核优秀,现获得该公司2010-2018年的相关数据如下表所示:
(1)从该公司2010-2018年的相关数据中任意选取3年的数据,以
表示3年中生产部门获得考核优秀的次数,求
的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润
(千万元)关于年生产量
(万台)的线性回归方程(精确到0.01).部分计算结果:
,
,
.
附:
;线性回归方程
中,
,
.
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产量(万台) | 3 | 4 | 5 | 6 | 7 | 7 | 9 | 10 | 12 |
产品年利润(千万元) | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.8 | 7.5 | 7.9 | 9.1 |
年返修量(台) | 47 | 42 | 48 | 50 | 92 | 83 | 72 | 87 | 90 |
(1)从该公司2010-2018年的相关数据中任意选取3年的数据,以


(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润





附:




若根据5名儿童的年龄
(岁)和体重
的数据用最小二乘法得到用年龄预报体重的回归方程是
,已知这5名儿童的年龄分别是3,5,2,6,4,则这5名儿童的平均体重是______
.




在一段时间内,分5次测得某种商品的价格
(万元)和需求量
之间的一组数据为:
已知
,
,
,
,
(1)求出
对
的回归方程;
(2)如价格定为1.9万元,预测需求量大约是多少?(精确到
).


| 1 | 2 | 3 | 4 | 5 |
价格![]() | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量![]() | 12 | 10 | 7 | 5 | 3 |
已知




(1)求出


(2)如价格定为1.9万元,预测需求量大约是多少?(精确到

下列说法错误的是



A.回归直线过样本点的中心![]() |
B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1 |
C.在回归直线方程![]() ![]() ![]() |
D.对分类变量X与Y,随机变量![]() |
假定小麦基本苗数
与成熟期有效穗
之间存在相关关系,今测得5组数据如下:

(1)以
为解释变量,
为预报变量,画出散点图
(2)求
与
之间的回归方程
(3)当基本苗数为
时预报有效穗(注:
,
)
,
,



(1)以


(2)求


(3)当基本苗数为






一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,收集数据如下:
设回归直线方程为
,若
,则点
在直线
的________方
零件个数 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
加工时间 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 |
设回归直线方程为



