对于分类变量的随机变量的观测值,下列说法正确的是
A.越大,“有关系”的可信程度越小
B.越小,“有关系”的可信程度越小
C.越接近于0,“没有关系”的可信程度越小
D.越大,“没有关系”的可信程度越大
当前题号:1 | 题型:单选题 | 难度:0.99
已知回归方程,而试验得到一组数据是,则残差平方和是______.
当前题号:2 | 题型:填空题 | 难度:0.99
某公司准备加大对一项产品的科技改造,经过充分的市场调研与模拟,得到xy之间的一组数,其中x(单位:百万元)是科技改造的总投入,y(单位:百万元)是改造后的额外收益
x
2
3
5
7
8
y
5
8
12
14
16
 
其中是对当地GDP的增长贡献值.
(1)若从五组数据中任取两组,求至少有一组满足的概率;
(2)对于表中数据,甲、乙两个同学给出的拟合直线方程为:,试用最小二乘法判断哪条直线的拟合程度更好.(附:Q越小拟合度越好.)
当前题号:3 | 题型:解答题 | 难度:0.99
下列命题:
①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
③若两个变量间的线性相关关系越强,则相关系数的值越接近于1;
④对分类变量的随机变量的观测值来说,越小,判断“有关系”的把握越大.
其中正确的命题序号是(   )
A.①②③B.①②C.①③④D.②③④
当前题号:4 | 题型:单选题 | 难度:0.99
指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重;当数值小于20.5时,我们说体重较轻;身高大于或等于170的我们说身高较高;身高小于170的我们说身高较矮.
(1)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图所示,请根据所得信息,完成下列列联表,并判断是否有95%的把握认为男体育特长生的身高对指数有影响;

 
身高较矮
身高较高
合计
体重较轻
 
 
 
体重较重
 
 
 
合计
 
 
 
 
(2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如下表所示:
编号
1
2
3
4
5
6
7
8
身高
166
167
160
173
178
169
158
173
体重
57
58
53
61
66
57
50
66
 
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献率 (保留两位有效数字);
编号
1
2
3
4
5
6
7
8
体重
57
58
53
61
66
57
50
66
残差
0.1
0.3
0.9
-1.5
-0.5
 
 
 
 
②通过残差分析,对于残差(绝对值)最大的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58(kg).请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
(参考公式)


).

0.10
0.05
0.01
0.005

2.706
3.841
6.635
7.879
 
(参考数据)

.
当前题号:5 | 题型:解答题 | 难度:0.99
2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布
(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量,则;
对于一组数据,其回归线的斜率和截距的最小二乘估计分别为
当前题号:6 | 题型:解答题 | 难度:0.99
对相关系数r来说,下列说法正确的是(  ).
A.越接近0,相关程度越大;越接近1,相关程度越小
B.越接近1,相关程度越大;越大,相关程度越小
C.越接近1,相关程度越大;越接近0,相关程度越小
D.越接近1,相关程度越小;越大,相关程度越大
当前题号:7 | 题型:单选题 | 难度:0.99
下列关于回归分析的说法中错误的是(   )
A.残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适
B.两个模型中残差平方和越小的模型拟合的效果越好
C.在线性回归方程中,当解释变量x每增加一个单位时,预报变量就平均增加0.2个单位
D.甲、乙两个模型的分别约为0.98和0.80,则模型乙的拟合效果更好
当前题号:8 | 题型:单选题 | 难度:0.99
某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
 
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
模型甲
估计值
 
2.4
2.1
 
1.6
残差
 
0
-0.1
 
0.1
模型乙
估计值
 
2.3
2
1.9
 
残差
 
0.1
0
0
 
 
②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当前题号:9 | 题型:解答题 | 难度:0.99
某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

 根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,甲: 
为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和,并通过比较,的大小,判断哪个模型拟合效果更好.
(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当前题号:10 | 题型:解答题 | 难度:0.99