- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 线性回归
- 误差分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点




(1)已知某高中共有32名男体育特长生,其身高与



| 身高较矮 | 身高较高 | 合计 |
体重较轻 | | | |
体重较重 | | | |
合计 | | | |
(2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如下表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高![]() ![]() | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重![]() ![]() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为


编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重![]() ![]() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差![]() | 0.1 | 0.3 | 0.9 | -1.5 | -0.5 | | | |
②通过残差分析,对于残差(绝对值)最大的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58(kg).请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
(参考公式)






![]() ![]() | 0.10 | 0.05 | 0.01 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
(参考数据)







2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:
(1)研究员甲根据以上数据认为
与
具有线性回归关系,请帮他求出
关于
的线.性回归方程
(保留小数点后两位有效数字)
(2)研究员乙根据以上数据得出
与
的回归模型:
.为了评价两种模型的拟合效果,请完成以下任务:
①完成下表(计算结果精确到0.01元)(备注:
称为相应于点
的残差);
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
的大小,判断哪个模型拟合效果更好.
(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:
.
参考数据:
.
生猪存栏数量![]() | 2 | 3 | 4 | 5 | 8 |
头猪每天平均成本![]() | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究员甲根据以上数据认为





(2)研究员乙根据以上数据得出



①完成下表(计算结果精确到0.01元)(备注:


生猪存栏数量![]() | 2 | 3 | 4 | 5 | 8 | |
头猪每天平均成本![]() | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估计值![]() | | | | | |
残差![]() | | | | | | |
模型乙 | 估计值![]() | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
残差![]() | 0 | 0 | 0 | 0.14 | 0.1 |
②分别计算模型甲与模型乙的残差平方和



(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:

参考数据:

2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布
.
(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入
(千元)与年收益增量
(千元).
的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线
的附近,且



,
,其中
.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量
,则
;
对于一组数据


,其回归线
的斜率和截距的最小二乘估计分别为
.

(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入













附:若随机变量



对于一组数据







低碳经济时代,文化和旅游两大产业逐渐成为我国优先发展的“绿色朝阳产业”.为了解某市的旅游业发展情况,某研究机构对该市2019年游客的消费情况进行随机调查,得到频数分布表及频率分布直方图.

(1)由图表中数据,求
的值及游客人均消费估计值(同一组中的数据以这组数据所在区间中点的值为代表)
(2)该机构利用最小二乘法得到2013~2017年该市的年旅游人次
(千万人次)与年份代码
的线性回归模型:
.
注:年份代码1~5分别对应年份2013~2017
①试求2013~2017年的年旅游人次的平均值;
②据统计,2018年该市的年旅游人次为9千万人次.建立2013~2018年该市年旅游人次
(千万人次)与年份代码
的线性回归方程,并估计2019年该市的年旅游收入.
注:年旅游收入=年旅游人次×人均消费
参考数据:
.参考公式:
,
.
旅游消费(千元) | ![]() | ![]() | ![]() | ![]() |
频数(人) | 10 | 60 | ![]() | ![]() |

(1)由图表中数据,求

(2)该机构利用最小二乘法得到2013~2017年该市的年旅游人次



注:年份代码1~5分别对应年份2013~2017
①试求2013~2017年的年旅游人次的平均值;
②据统计,2018年该市的年旅游人次为9千万人次.建立2013~2018年该市年旅游人次


注:年旅游收入=年旅游人次×人均消费
参考数据:



某农科所发现,一种作物的年收获量
(单位:
)与它“相近”作物的株数
具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过
),并分别记录了相近作物的株数为
时,该作物的年收获量的相关数据如下:

(1)求该作物的年收获量
关于它“相近”作物的株数
的线性回归方程;
(2)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每
个小正方形的面积为
,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收
获量以线性回归方程计算所得数据为依据)
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估
计分别为,
, 





![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |

(1)求该作物的年收获量


(2)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每
个小正方形的面积为

获量以线性回归方程计算所得数据为依据)
附:对于一组数据


计分别为,


种子发芽率与昼夜温差有关.某研究性学习小组对此进行研究,他们分别记录了3月12日至3月16日的昼夜温差与每天100颗某种种子浸泡后的发芽数,如下表:

(I)从3月12日至3月16日中任选2天,记发芽的种子数分别为c,d,求事件“c,d均不小于25”的概率;
(II)请根据3月13日至3月15日的三组数据,求出y关于x的线性回归方程
;
(III)若由线性回归方程得到的估计数据与实际数据误差均不超过2颗,则认为回归方程是可靠的,试用3月12日与16日的两组数据检验,(II)中的回归方程是否可靠?

(I)从3月12日至3月16日中任选2天,记发芽的种子数分别为c,d,求事件“c,d均不小于25”的概率;
(II)请根据3月13日至3月15日的三组数据,求出y关于x的线性回归方程

(III)若由线性回归方程得到的估计数据与实际数据误差均不超过2颗,则认为回归方程是可靠的,试用3月12日与16日的两组数据检验,(II)中的回归方程是否可靠?
随着自媒体直播平台的迅猛发展,直播平台上涌现了许多知名三农领域创作者,通过直播或视频播放,帮助当地农民在直播平台上销售了大量的农产品,促进了农村的经济发展,当地农业与农村管理部门对近几年的某农产品年产量进行了调查,形成统计表如下:

(1)根据表中数据,建立y关于t的线性回归方程
;
(2)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
(参考数据:
)

(1)根据表中数据,建立y关于t的线性回归方程

(2)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据




(参考数据:

已知两个统计案例如下:
①为了探究患肺炎与吸烟的关系,调查了
名
岁以上的人,调查结果如下表:
②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:
则对这些数据的处理所应用的统计方法是( )
①为了探究患肺炎与吸烟的关系,调查了


| 患肺炎 | 未患肺炎 | 总计 |
吸烟 | 43 | 162 | 205 |
不吸烟 | 13 | 121 | 134 |
总计 | 56 | 283 | 339 |
②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:
母亲身高(cm) | 159 | 160 | 160 | 163 | 159 | 154 | 159 | 158 | 159 | 157 |
女儿身高(cm) | 158 | 159 | 160 | 161 | 161 | 155 | 162 | 157 | 162 | 156 |
则对这些数据的处理所应用的统计方法是( )
A.①回归分析,②取平均值 | B.①独立性检验,②回归分析 |
C.①回归分析,②独立性检验 | D.①独立性检验,②取平均值 |
对于回归分析,下列说法错误的是( )
A.在回归分析中,变量间的关系若是非确定性关系,则因变量不能由自变量唯一确定 |
B.线性相关系数可以是正的或负的 |
C.在回归分析中,如果r=±1,说明x与y之间完全线性相关 |
D.样本相关系数r可以是任意实数 |