为了解儿子身高与其父亲身高的关系,随机调查了5对父子的身高,统计数据如下表所示.
编   号
A
B
C
D
E
父亲身高
174
176
176
176
178
儿子身高
175
175
176
177
177
 
(1)从这五对父子任意选取两对,用编号表示出所有可能取得的结果,并求随机事件 “两对父子中儿子的身高都不低于父亲的身高”发生的概率;
(2)由表中数据,利用“最小二乘法”求关于的回归直线的方程.
参考公式:;回归直线:
当前题号:1 | 题型:解答题 | 难度:0.99
武汉某科技公司为提高市场销售业绩,现对某产品在部分营销网点进行试点促销活动.现有两种活动方案,在每个试点网点仅采用一种活动方案,经统计,2018年1月至6月期间,每件产品的生产成本为10元,方案1中每件产品的促销运作成本为5元,方案2中每件产品的促销运作成本为2元,其月利润的变化情况如图①折线图所示.

(1)请根据图①,从两种活动方案中,为该公司选择一种较为有利的活动方案(不必说明理由);
(2)为制定本年度该产品的销售价格,现统计了8组售价xi(单位:元/件)和相应销量y(单位:件)(i=1,2,…8)并制作散点图(如图②),观察散点图可知,可用线性回归模型拟合yx的关系,试求y关于x的回归方程(系数精确到整数);
参考公式及数据:40,660,xiyi=206630,x12968,
(3)公司策划部选1200lnx+5000和x3+1200两个模型对销量与售价的关系进行拟合,现得到以下统计值(如表格所示):
 

x3+1200

52446.95
122.89

124650
相关指数
R
R
 
相关指数:R2=1
i)试比较R12R22的大小(给出结果即可),并由此判断哪个模型的拟合效果更好;
ii)根据(1)中所选的方案和(i)中所选的回归模型,求该产品的售价x定为多少时,总利润z可以达到最大?
当前题号:2 | 题型:解答题 | 难度:0.99
互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:
 
1日
2日
3日
4日
5日
外卖甲日接单x(百单)
5
2
9
8
11
外卖乙日接单y(百单)
2
3
10
5
15
 
(1)试根据表格中这五天的日接单量情况,从统计的角度说明这两家外卖企业的经营状况;
(2)据统计表明,yx之间具有线性关系.
①请用相关系数r对y与x之间的相关性强弱进行判断;(若,则可认为yx有较强的线性相关关系(r值精确到0.001))
②经计算求得yx之间的回归方程为,假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围.(x值精确到0.01)
相关公式:
参考数据:.
当前题号:3 | 题型:解答题 | 难度:0.99
如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是( )
A.B.
C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
“新车嗨翻天!首付3000元起开新车”这就是毛豆新车网打出来的广告语.某人看到广告,兴奋不已,计划于2019年1月在该网站购买一辆某品牌汽车,他从当地了解到近五个月该品牌汽车实际销量如表:
月份
2018.08
2018.09
2018.10
2018.11
2018.12
月份编号t
1
2
3
4
5
销量y(万辆)
0.5
0.6
1
1.4
1.7
 
(1)经分析,可用线性回归模型拟合当地该品牌汽车实际销量y(万辆)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程,并估计2019年1月份该品牌汽车的销量:
(2)为了增加销量,厂家和毛豆新车网联合推出对购该品牌车进行补贴.已知某地拟购买该品牌汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:
补贴金额预期值
区间(万元)
[1,2)
[2,3)
[3,4)
[4,5)
[5,6)
[6,7)
频数
20
60
60
30
20
10
 
将频率视为概率,现用随机抽样方法从该地区拟购买该品牌汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为ξ,求ξ的分布列及数学期望Eξ
参考公式及数据:①回归方程,其中;②
当前题号:5 | 题型:解答题 | 难度:0.99
有下列说法:
①一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是12人;
②在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X在(0,1)内取值的概率为0.4,则X在(0,2)内取值的概率为0.8.
③废品率x%和每吨生铁成本y(元)之间的回归直线方程为2x+256,这表明废品率每增加1%,生铁成本大约增加258元;
④为了检验某种血清预防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防作用”,利用2×2列联表计算得K2的观测值k≈3.918,经查对临界值表知PK2≥3841)≈0.05,由此,得出以下判断:在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防的作用”,
正确的有(   )
A.①②④B.①②③C.①③D.③④
当前题号:6 | 题型:单选题 | 难度:0.99
《中华人民共和国道路交通安全法》第条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第条规定:对不礼让行人的驾驶员处以扣分,罚款元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份





违章驾驶员人数





 
(1)请利用所给数据求违章人数与月份之间的回归直线方程
(2)预测该路口月份的不“礼让斑马线”违章驾驶员人数.
参考公式: ,参考数据:.
当前题号:7 | 题型:解答题 | 难度:0.99
下表是鞋子的长度与对应码数的关系
长度(
24
24.5
25
25.5
26
26.5
码数
38
39
40
41
42
43
 
如果人的身高与脚板长呈线性相关且回归直线方程为.若某人的身高为173,据此模型,估计其穿的鞋子的码数为(   )
A.40B.41C.42D.43
当前题号:8 | 题型:单选题 | 难度:0.99