- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 线性回归
- 误差分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:
(1)若私家车的数量
与年份编号
满足线性相关关系,求
关于
的线性回归方程,并预测2020年该小区的私家车数量;
(2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年已登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

(i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;
(ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)
参考公式及数据:对于一组数据
,其回归方程
的斜率和截距的最小二乘估计分别为:
;
.
编号![]() | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
数量![]() | 37 | 104 | 147 | 196 | 216 |
(1)若私家车的数量




(2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年已登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

(i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;
(ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)
参考公式及数据:对于一组数据




某市春节期间7家超市的广告费支出
(万元)和销售额
(万元)数据如下:
(1)若用线性回归模型拟合
与
的关系,求
关于
的线性回归方程;
(2)用二次函数回归模型拟合
与
的关系,可得回归方程:
,经计算二次函数回归模型和线性回归模型的相关指数
分别约为
和
,请用
说明选择哪个回归模型更合适,并用此模型预测超市应支出多少万元广告费,能获得最大的销售额?最大的销售额是多少?(精确到个位数)
参数数据及公式:
,
,
.


超市 | A | B | C | D | E | F | G |
广告费支出![]() | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额![]() | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合




(2)用二次函数回归模型拟合







参数数据及公式:



为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:
由最小二乘法得
与
的线性回归方程为
,则当
时,繁殖个数
的预测值为( )
天数![]() | 3 | 4 | 5 | 6 |
繁殖个数![]() | 2.5 | 3 | ![]() | 4.5 |
由最小二乘法得





A.4.9 | B.5.25 |
C.5.95 | D.6.15 |
为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从
月份的
天中随机挑选了
天进行研究,且分别记录了每天昼夜温差与每天
颗种子浸泡后的发芽数,得到如下表格:
(
)从这
天中任选
天,记发芽的种子数分别为
,
,求事件“
,
均不小于
”的概率.
(
)从这
天中任选
天,若选取的是
月
日与
月
日的两组数据,请根据这
天中的另
天的数据,求出
关于
的线性回归方程
.
(
)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过
颗,则认为得到的线性回归方程是可靠的,试问(
)中所得的线性回归方程是否可靠?
(参考公式:
.




日期 | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() |
温差![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
发芽数![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(








(












(



(参考公式:

假设关于某设备的使用年限
和所支出的维修费用
(万元)统计数据如下:
若由数据知
对
呈线性相关关系.
(1)填出下表并求出线性回归方程
;
(2)估计使用
年时,维修费用是多少?


使用年限![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
维修费用![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
若由数据知


(1)填出下表并求出线性回归方程

序号 | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | | |
![]() | ![]() | ![]() | | |
![]() | ![]() | ![]() | | |
![]() | ![]() | ![]() | | |
![]() | ![]() | ![]() | | |
![]() | | | | |
(2)估计使用

研究机构对某校学生往返校时间的统计资料表明:该校学生居住地到学校的距离
(单位:千米)和学生花费在上学路上的时间
(单位:分钟)有如下的统计资料:
如果统计资料表明
与
有线性相关关系,试求:
(1)判断
与
是否有很强的线性相关性?
(相关系数
的绝对值大于0.75时,认为两个变量有很强的线性相关性,精确到0.01)
(2)求线性回归方程
(精确到0.01);
(3)将
分钟的时间数据
称为美丽数据,现从这6个时间数据
中任取2个,求抽取的2个数据全部为美丽数据的概率.
参考数据:
,
,
,
,
,
参考公式:
,


到学校的距离![]() | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花费的时间![]() | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果统计资料表明


(1)判断


(相关系数

(2)求线性回归方程

(3)将



参考数据:






参考公式:


为了调查煤矿公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.

(Ⅰ)是否有95%的把握认为饮食习惯与月收入有关系?若有请说明理由,若没有,说明理由并分析原因;
(Ⅱ)以样本中的频率作为概率,从该公司所有主食蔬菜的员工中随机抽取3人,这3人中月收入4000元以上的人数为
,求
的分布列与期望;
(Ⅲ)经调查该煤矿公司若干户家庭的年收入
(万元)和年饮食支出
(万元)具有线性相关关系,并得到
关于
的回归直线方程:
.若该公司一个员工与其妻子的月收入恰好都为这30人的月平均收入(该家庭只有两人收入),估计该家庭的年饮食支出费用.
附:
.

20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(Ⅰ)是否有95%的把握认为饮食习惯与月收入有关系?若有请说明理由,若没有,说明理由并分析原因;
(Ⅱ)以样本中的频率作为概率,从该公司所有主食蔬菜的员工中随机抽取3人,这3人中月收入4000元以上的人数为


(Ⅲ)经调查该煤矿公司若干户家庭的年收入





附:

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在
省的发展情况,
省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的
,
两项指标数
,数据如下表所示:
经计算得:
,
,
.
(1)试求
与
间的相关系数
,并利用
说明
与
是否具有较强的线性相关关系(若
,则线性相关程度很高,可用线性回归模型拟合);
(2)建立
关于
的回归方程,并预测当
指标数为7时,
指标数的估计值;
(3)若城市的网约车
指标数
落在区间
之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至
指标数
回落到区间
之内.现已知2018年11月该城市网约车的
指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.
附:相关公式:
,
,
.
参考数据:
,
.





| 城市1 | 城市2 | 城市3 | 城市4 | 城市5 |
![]() ![]() | 2 | 4 | 5 | 6 | 8 |
![]() ![]() | 3 | 4 | 4 | 4 | 5 |
经计算得:



(1)试求







(2)建立




(3)若城市的网约车







附:相关公式:



参考数据:


节能降耗是企业的生存之本,树立一种“点点滴滴降成本,分分秒秒增效益”的节能意识,以最好的管理,来实现节能效益的最大化
为此某国企进行节能降耗技术改造,下面是该国企节能降耗技术改造后连续五年的生产利润:
预测第8年该国企的生产利润约为
千万元
参考公式及数据:
;
,
,

年号 | 1 | 2 | 3 | 4 | 5 |
年生产利润![]() ![]() | ![]() | ![]() | 1 | ![]() | ![]() |
预测第8年该国企的生产利润约为







A.![]() | B.![]() | C.![]() | D.![]() |
某电视厂家准备在五一举行促销活动,现在根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x(万元)和销售量y(万台)的数据如下:

(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程(其中
;参考方程:回归直线
,
)
(2)若用模型
拟合y与x的关系,可得回归方程
,经计算线性回归模型和该模型的
分别约为0.75和0.88,请用
说明选择哪个回归模型更好;
(3)已知利润z与x,y的关系为z=200y﹣x.根据(2)的结果回答:当广告费x=20时,销售量及利润的预报值是多少?(精确到0.01)参考数据:

(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程(其中



(2)若用模型




(3)已知利润z与x,y的关系为z=200y﹣x.根据(2)的结果回答:当广告费x=20时,销售量及利润的预报值是多少?(精确到0.01)参考数据:
