- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 线性回归
- 误差分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知具有相关关系的两个变量
之间的几组数据如下表所示:
(1)请根据上表数据在网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
,并估计当
时,
的值.
参考公式:
,
.

![]() | 2 | 4 | 6 | 8 | 10 |
![]() | 3 | 6 | 7 | 10 | 12 |
(1)请根据上表数据在网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出





参考公式:



某小区新开了一家“重庆小面”面馆,店主统计了开业后五天中每天的营业额(单位:百元),得到下表中的数据,分析后可知
与x之间具有线性相关关系.

(1)求营业额
关于天数x的线性回归方程;
(2)试估计这家面馆第6天的营业额.
附:回归直线方程
中,
,
.


(1)求营业额

(2)试估计这家面馆第6天的营业额.
附:回归直线方程



某特色餐馆开通了美团外卖服务,在一周之内的某特色菜外卖份数
(份)与收入
(元)之间有如下的对应数据:

(1)画出散点图;

(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:参考公式:线性回归方程系数公式
,
参考数据:
,
,



(1)画出散点图;

(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:参考公式:线性回归方程系数公式


参考数据:



对某种书籍的成本费
(元)与印刷册数
(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.


表中
.
为了预测印刷20千册时每册的成本费,建立了两个回归模型:
.
(1)根据散点图,拟认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中的模型选择,求
关于
的回归方程,并预测印刷20千册时每册的成本费.
附:对于一组数据
,其回归方程
中斜率和截距的最小二乘估计公式分别为:
,
.




表中

为了预测印刷20千册时每册的成本费,建立了两个回归模型:

(1)根据散点图,拟认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中的模型选择,求


附:对于一组数据




有下列说法:①回归直线方程适用于一切样本和总体;②回归直线方程一般都有时间性;③样本取值的范围会影响回归直线方程的适用范围;④回归直线方程得到的预报值是预报变量的精确值.其中正确的是( )
A.①② | B.②③ | C.③④ | D.①③ |
(12分)
炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:

(1)据统计表明,
之间具有线性相关关系,请用相关系数r加以说明(
,则认为y与x有较强的线性相关关系,否则认为没有较强的线性相关关系,r精确到0.001);
(2)建立y关于x的回归方程(回归系数的结果精确到0.01);
(3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.
参考公式:回归方程
中斜率和截距的最小二乘估计分别为
,
,相关系数
参考数据:
,
.
炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:

(1)据统计表明,



(2)建立y关于x的回归方程(回归系数的结果精确到0.01);
(3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.
参考公式:回归方程




参考数据:


某商品要了解年广告费
(单位:万元)对年利润
(单位:万元)的影响,对近4年的年广告费
和年利润
数据作了初步整理,得到下面的表格:
(Ⅰ)用广告费作解释变量,年利润作预报变量,建立
关于
的回归直线方程;
(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.




广告费![]() | 2 | 3 | 4 | 5 |
年利润![]() | 26 | 39 | 49 | 54 |
(Ⅰ)用广告费作解释变量,年利润作预报变量,建立


(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.
附:对于一组数据










时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅰ)根据上表数据,请在所给的坐标系中画出散点图;
(Ⅱ)根据上表数据,用最小二乘法求出



(Ⅲ)若周六同一时间段的车流量是


参考公式:由最小二乘法所得回归直线的方程是:

其中

第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和
(从第26届算起,不包括之前已获得的金牌数)随时间
变化的数据:
作出散点图如图:

由图可以看出,金牌数之和
与时间
之间存在线性相关关系,请求出
关于
的线性回归方程,并预测到第32届奥运会时中国代表团获得的金牌数之和为多少?
| 第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和


时间![]() | 26 | 27 | 28 | 29 | 30 |
金牌数之和![]() | 16 | 44 | 76 | 127 | 165 |
作出散点图如图:

由图可以看出,金牌数之和



