- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 线性回归
- 误差分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是2011年至2018年天猫双十一当天销售额
(单位:百亿元)的折线图,为了预测2019年双十一当天销售额,建立了
与时间变量
的线性回归模型.

(Ⅰ)根据2011年至2018年的数据(时间变量
的值依次为1,2,3,4,5,6,7,8),用最小二乘法,得到了
关于
的线性回归方程
,求
的值,并预测2019年(此时
)双十一当天销售额;
(Ⅱ)假设你作为天猫商城董事会成员,针对双十一当天销售额增长情况,给天猫商城管理层制定一个股权奖励方案.从2012年开始到2017年,如果该年度双十一当天销售对比上一年增长超过五成,则对天猫商城管理层进行股权奖励.从2012年到2017年中,求天猫商城管理层连续两年都能获得股权奖励的概率.
附:
,




(Ⅰ)根据2011年至2018年的数据(时间变量






(Ⅱ)假设你作为天猫商城董事会成员,针对双十一当天销售额增长情况,给天猫商城管理层制定一个股权奖励方案.从2012年开始到2017年,如果该年度双十一当天销售对比上一年增长超过五成,则对天猫商城管理层进行股权奖励.从2012年到2017年中,求天猫商城管理层连续两年都能获得股权奖励的概率.
附:


某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.
参考公式:
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
参考公式:

(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
下列关于回归分析的说法中错误的是( )
A.回归直线一定过样本中心![]() |
B.残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适 |
C.两个模型中残差平方和越小的模型拟合的效果越好 |
D.甲、乙两个模型的![]() |
“中国大能手”是央视推出的一档大型职业技能挑战赛类节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加“中国大能手”职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间
(单位:秒)及挑战失败(用“×”表示)的情况如下表1:
据上表中的数据,应用统计软件得下表2:
(1)根据上述回归方程,预测甲、乙分别在下一次完成该项关键技能挑战所用的时间;
(2)若该公司只有一个参赛名额,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.

序号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
![]() | × | 96 | 93 | × | 92 | × | 90 | 86 | × | × | 83 | 80 | 78 | 77 | 75 |
![]() | × | 95 | × | 93 | × | 92 | × | 88 | 83 | × | 82 | 80 | 80 | 74 | 73 |
据上表中的数据,应用统计软件得下表2:
| 均值(单位:秒)方差 | 方差 | 线性回归方程 |
甲 | 85 | 50.2 | ![]() |
乙 | 84 | 54 | ![]() |
(1)根据上述回归方程,预测甲、乙分别在下一次完成该项关键技能挑战所用的时间;
(2)若该公司只有一个参赛名额,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.
下图是我国2010年至2016年生活垃圾无害化处理量(单位:亿吨)的折线图

注:年份代码1~7分别对应年份2010~2016
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请求出相关系数r,并用相关系数的大小说明y与t相关性的强弱;
(2)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.
附注:
参考数据:
,
,
,
.
参考公式:
相关系数
回归方程
中斜率和截距的最小二乘估计公式分别为:


注:年份代码1~7分别对应年份2010~2016
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请求出相关系数r,并用相关系数的大小说明y与t相关性的强弱;
(2)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.
附注:
参考数据:




参考公式:
相关系数

回归方程



某种产品的广告费支出
与销售额
(单位:万元)具有较强的相关性,且两者之间有如下对应数据:
(1)求
关于
的线性回归方程
;
(2)根据(1)中的线性回归方程,当广告费支出为10万元时,预测销售额是多少?
参考数据:
,
,
。
附:回归方程
中斜率和截距的最小二乘估计公式分别为:
,
.


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 28 | 36 | 52 | 56 | 78 |
(1)求



(2)根据(1)中的线性回归方程,当广告费支出为10万元时,预测销售额是多少?
参考数据:



附:回归方程



随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
(1)求
关于
的回归方程
(2)用所求回归方程预测该地区2018年(
)的人民币储蓄存款.
(参考公式:
,
,)
年份 | 2013 | 2014 | 2015 | 2016 | 2017 |
时间代号![]() | 1 | 2 | 3 | 4 | 5 |
储蓄存款![]() | 5 | 6 | 7 | 8 | 10 |
(1)求



(2)用所求回归方程预测该地区2018年(

(参考公式:



某地区积极发展电商,通过近些年工作的开展在新农村建设和扶贫过程中起到了非常重要的作用,促进了农民生活富裕,为了更好地了解本地区某一特色产品的宣传费
(千元)对销量
(千件)的影响,统计了近六年的数据如下:

(1)若近6年的宣传费
与销量
呈线性分布,由前5年数据求线性回归直线方程,并写出
的预测值;
(2)若利润与宣传费的比值不低于20的年份称为“吉祥年”,在这6个年份中任意选2个年份,求这2个年份均为“吉祥年”的概率
附:回归方程
的斜率与截距的最小二乘法估计分别为
,
,其中
,
为
,
的平均数.



(1)若近6年的宣传费



(2)若利润与宣传费的比值不低于20的年份称为“吉祥年”,在这6个年份中任意选2个年份,求这2个年份均为“吉祥年”的概率
附:回归方程






