- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- 回归直线方程
- + 最小二乘法
- 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)
(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.
参考公式:
,
;
参考数据:
,
.
中学编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采购加工标准评分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
卫生标准评分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)
(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.
参考公式:


参考数据:


某单位应上级扶贫办的要求,对本单位所有扶贫户每年年底进行收入统计,如表是该单位扶贫户中的
户从2015年至2018年的收入统计数据:(其中
为
贫困户的人均年纯收入)
(1)作出
贫困户的人均年纯收入的散点图;
(2)根据上表数据,用最小二乘法求出
关于年份代码
的线性回归方程
,并估计
贫困户在2019年能否脱贫(注:国家规定2019年的脱贫标准:人均年纯收入不低于3747元).(参考公式:
)



年份 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代码![]() | 1 | 2 | 3 | 4 |
人均纯收入![]() | 25 | 28 | 32 | 35 |
(1)作出

(2)根据上表数据,用最小二乘法求出





已知回归直线的斜率的估计值为1.23,样本点的中心为(5,6),则回归直线方程为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
已知y与x及
与
的成对数据如下,且y关于x的回归直线方程为
,则
关于
的回归直线方程为( )





x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 3 | 4 | 5 | 7 |
![]() | 10 | 20 | 30 | 40 | 50 |
![]() | 20 | 30 | 40 | 50 | 70 |
A.![]() | B.![]() | C.![]() | D.![]() |
恩格尔系数是食品支出总额占个人消费支出总额的比重,恩格尔系数越小,消费结构越完善,生活水平越高.某学校社会调查小组得到如下数据:

若
与
之间有线性相关关系,老张年个人消费支出总额为2.8万元,据此估计其恩格尔系数为_____________.
参考数据:
.
参考公式:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.

若


参考数据:

参考公式:对于一组数据



某车间加工零件的数量
与加工时间
的统计数据如表:
现已求得上表数据的回归方程
中的
值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )


零件数![]() | 18 | 20 | 22 |
加工时间![]() | 27 | 30 | 33 |
现已求得上表数据的回归方程


A.84分钟 | B.94分钟 | C.102分钟 | D.112分钟 |
为了解儿子身高与其父亲身高的关系,随机调查了5对父子的身高,统计数据如下表所示.
(1)从这五对父子任意选取两对,用编号表示出所有可能取得的结果,并求随机事件
“两对父子中儿子的身高都不低于父亲的身高”发生的概率;
(2)由表中数据,利用“最小二乘法”求
关于
的回归直线的方程.
参考公式:
,
;回归直线:
.
编 号 | A | B | C | D | E |
父亲身高![]() | 174 | 176 | 176 | 176 | 178 |
儿子身高![]() | 175 | 175 | 176 | 177 | 177 |
(1)从这五对父子任意选取两对,用编号表示出所有可能取得的结果,并求随机事件

(2)由表中数据,利用“最小二乘法”求


参考公式:



为了解儿子身高与其父亲身高的关系,随机调查了5对父子的身高,统计数据如下表所示.

(1)从这五对父子任意选取两对,用编号表示出所有可能取得的结果,并求随机事件M
“两对父子中儿子的身高都不低于父亲的身高”发生的概率;
(2)由表中数据,利用“最小二乘法”求
关于
的回归直线的方程.
参考公式:
,
;回归直线:
.

(1)从这五对父子任意选取两对,用编号表示出所有可能取得的结果,并求随机事件M

(2)由表中数据,利用“最小二乘法”求


参考公式:


