- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- 回归直线方程
- + 最小二乘法
- 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2018年1月~8月促销费用(万元)和产品销量(万件)的具体数据.
(1)根据数据可知
与
具有线性相关关系,请建立
与
的回归方程
(系数精确到0.01);
(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以
(单位:件)表示日销量,
,则每位员工每日奖励100元;
,则每位员工每日奖励150元,
,则每位员工每日奖励200元.现已知该网站6月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约多少元(当月奖励金额总数精确到百分位).
参考数据:
,
,其中
,
分别为第
个月的促销费用和产品销量,
.
参考公式:①对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计分别为
,
;②若随机变量
服从正态分布
,则
,
.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用![]() | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量![]() | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知





(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以






参考数据:






参考公式:①对于一组数据










某研究机构在对具有线性相关的两个变量
进行统计分析时,得到如下数据,由表中数据求得
关于
的回归方程为
,则在这些样本中任取一点,该点落在回归直线下方的概率为( )




![]() | 3 | 5 | 7 | 9 |
![]() | 1 | 2 | 4 | 5 |
A.![]() | B.![]() | C.![]() | D.0 |
“双十一网购狂欢节”源于淘宝商城(天猫)
年
月
日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是
月
日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商为分析近
年“双十一”期间的宣传费用
(单位:万元)和利润
(单位:十万元)之间的关系,搜集了相关数据,得到下列表格:
(1)请用相关系数
说明
与
之间是否存在线性相关关系(当
时,说明
与
之间具有线性相关关系);
(2)建立
关于
的线性回归方程(系数精确到
),预测当宣传费用为
万元时的利润.
附参考公式:回归方程
中
和
最小二乘估计公式分别为
,
,相关系数
参考数据:
,
,
,








![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)请用相关系数






(2)建立




附参考公式:回归方程






参考数据:




政府工作报告指出,2018年我国深入实施创新驱动发展战略,创新能力和效率进一步提升;2019年要提升科技支撑能力,健全以企业为主体的产学研一体化创新机制.某企业为了提升行业核心竞争力,逐渐加大了科技投入;该企业连续6年来的科技投入
(百万元)与收益
(百万元)的数据统计如下:
根据散点图的特点,甲认为样本点分布在指数曲线
的周围,据此他对数据进行了一些初步处理,如下表:
其中
,
.
(1)(i)请根据表中数据,建立
关于
的回归方程(保留一位小数);
(ii)根据所建立的回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中
)?
(2)乙认为样本点分布在二次曲线
的周围,并计算得回归方程为
,以及该回归模型的相关指数
,试比较甲、乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据
,
,…,
,其回归直线方程
的斜率和截距的最小二乘估计分别为
,
,相关指数:
.


科技投入![]() | 2 | 4 | 6 | 8 | 10 | 12 |
收益![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
根据散点图的特点,甲认为样本点分布在指数曲线

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
其中


(1)(i)请根据表中数据,建立


(ii)根据所建立的回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中

(2)乙认为样本点分布在二次曲线



附:对于一组数据







某个地区计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水的年入流量
(年入流量:一年内上游来水与库区降水之和,单位:十亿立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超过12的年份有35年,超过12的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量
与其蕴含的能量
(单位:百亿万焦)之间的部分对应数据为如下表所示:
用最小二乘法求出
关于
的线性回归方程
;(回归方程系数用分数表示)
(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:
,
.

(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量


年入流量![]() | 6 | 8 | 10 | 12 | 14 |
蕴含的能量![]() | 1.5 | 2.5 | 3.5 | 5 | 7.5 |
用最小二乘法求出



(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量

年入流量![]() | ![]() | ![]() | ![]() |
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:


下面给出了根据我国2012年~2018年水果人均占有量
(单位:
)和年份代码
绘制的散点图(2012年~2018年的年份代码
分别为1~7).

(1)根据散点图分析
与
之间的相关关系;
(2)根据散点图相应数据计算得
,
,求
关于
的线性回归方程.
参考公式:
.





(1)根据散点图分析


(2)根据散点图相应数据计算得




参考公式:

基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率
进行了统计,结果如下表:
(1)请用相关系数说明能否用线性回归模型拟合
与月份代码
之间的关系.如果能,请计算出
关于
的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的
型车和800元/辆的
型车中选购一种,两款单车使用寿命频数如下表:
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:
,
,
,
.
参考公式:相关系数
,
,
.

月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码![]() | 1 | 2 | 3 | 4 | 5 | 6 |
![]() | 11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合




(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的


![]() | 1年 | 2年 | 3年 | 4年 | 总计 |
![]() | 10 | 30 | 40 | 20 | 100 |
![]() | 15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:




参考公式:相关系数



某人经营淡水池塘养草鱼,根据过去
期的养殖档案,该池塘的养殖重量
(百斤)都在
百斤以上,其中不足
百斤的
期,不低于
百斤且不超过
百斤的有
期,超过
百斤的有
期.根据统计,该池塘的草鱼重量的增加量
(百斤)与使用某种饵料的质量
(百斤)之间的关系如图所示.

(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
;如果此人设想使用某种饵料
百斤时,草鱼重量的增加量须多于
百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧与新鲜度要求较高,故养殖户需设置若干台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有关,并有如下关系:
若某台增氧冲水机运行,则该台冲水机每期盈利
千元;若某台冲水机未运行,则该台冲水机每期亏损
千元.以频率作为概率,养殖户欲使每期冲水机总利润的均值达到最大,应安装几台增氧冲水机?
附:对于一组数据
,其回归方程
的斜率和截距的最小二乘估计公式分别为:
,
.













鱼的重量(单位:百斤) | ![]() | ![]() | ![]() |
冲水机运行台数 | 1 | 2 | 3 |
(1)根据数据可知







(2)养鱼的池塘对水质含氧与新鲜度要求较高,故养殖户需设置若干台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有关,并有如下关系:
若某台增氧冲水机运行,则该台冲水机每期盈利


附:对于一组数据



