- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列命题中,选项正确的是( )
A.在回归直线![]() ![]() ![]() |
B.两个变量相关性越强,则相关系数![]() |
C.在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关 |
D.若某商品的销售量![]() ![]() ![]() |
由一组样本数据
,
,
,
得到的回归直线方程为
,那么下面说法正确的序号________.
(1) 直线
必经过点 
(2)直线
至少经过点
,
,
,
中的一个
(3)直线
的斜率为
.
(4)回归直线方程
最能代表样本数据中
,
之间的线性关系,b大于0时
与
正相关,b小于0时
与
负相关.
注:相关数据:
,其中





(1) 直线


(2)直线





(3)直线


(4)回归直线方程







注:相关数据:


下列四个结论:
①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;
②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;
③线性相关系数
越大,两个变量的线性相关性越弱;反之,线性相关性越强;
④在回归方程
中,当解释变量
每增加一个单位时,预报变量
增加0.5个单位.
其中正确的结论是( )
①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;
②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;
③线性相关系数

④在回归方程



其中正确的结论是( )
A.①② | B.①④ |
C.②③ | D.②④ |
四名同学根据各自的样本数据研究变量
,
之间的相关关系,并求得回归直线方程,分别得到以下四个结论:
①
与
负相关,且
;
②
与
负相关,且
;
③
与
正相关,且
;
④
与
正相关,且
.
其中一定不正确的结论的序号是


①



②



③



④



其中一定不正确的结论的序号是
A.①② | B.②③ | C.③④ | D.①④ |
某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
(Ⅰ)经分析发现,可用线性回归模型
拟合当地该商品销量
(千件)与返还点数
之间的相关关系.试预测若返回6个点时该商品每天的销量;
(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值
的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(2)将对返点点数的心理预期值在
和
的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中 “欲望紧缩型”消费者的人数为随机变量
,求
的分布列及数学期望.
反馈点数t | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)经分析发现,可用线性回归模型



(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值

(2)将对返点点数的心理预期值在




某电视厂家准备在五一举行促销活动,现在根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x(万元)和销售量y(万台)的数据如下:

(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程(其中
;参考方程:回归直线
,
)
(2)若用模型
拟合y与x的关系,可得回归方程
,经计算线性回归模型和该模型的
分别约为0.75和0.88,请用
说明选择哪个回归模型更好;
(3)已知利润z与x,y的关系为z=200y﹣x.根据(2)的结果回答:当广告费x=20时,销售量及利润的预报值是多少?(精确到0.01)参考数据:

(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程(其中



(2)若用模型




(3)已知利润z与x,y的关系为z=200y﹣x.根据(2)的结果回答:当广告费x=20时,销售量及利润的预报值是多少?(精确到0.01)参考数据:

有下列说法:
①若某商品的销售量
(件)关于销售价格
(元/件)的线性回归方程为
,当销售价格为10元时,销售量一定为300件;
②线性回归直线
一定过样本点中心
;
③若两个随机变量的线性相关性越强,则相关系数
的值越接近于1;
④在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;
⑤在线性回归模型中,相关指数
表示解释变量对于预报变量变化的贡献率,
越接近于1,表示回归的效果越好;
其中正确的结论有几个( )
①若某商品的销售量



②线性回归直线


③若两个随机变量的线性相关性越强,则相关系数

④在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;
⑤在线性回归模型中,相关指数


其中正确的结论有几个( )
A.1 | B.2 | C.3 | D.4 |
研究变量
得到一组样本数据,进行回归分析,有以下结论
①残差平方和越小的模型,拟合的效果越好;
②用相关指数
来刻画回归效果,
越小说明拟合效果越好;
③在回归直线方程
中,当解释变量
每增加1个单位时,预报变量
平均增加0.2个单位
④若变量
和
之间的相关系数为
,则变量
和
之间的负相关很强,以上正确说法的个数是( )

①残差平方和越小的模型,拟合的效果越好;
②用相关指数


③在回归直线方程



④若变量





A.1 | B.2 | C.3 | D.4 |