- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如表是某位同学连续5次周考的历史、政治的成绩,结果如下:
参考公式:
,
,
表示样本均值.
(1)求该生5次月考历史成绩的平均分和政治成绩的方差;
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量
的线性回归方程.
周次 | 1 | 2 | 3 | 4 | 5 |
历史(x分) | 79 | 81 | 83 | 85 | 87 |
政治(y分) | 77 | 79 | 79 | 82 | 83 |
参考公式:



(1)求该生5次月考历史成绩的平均分和政治成绩的方差;
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量

某公司在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(1)根据频率分布直方图,计算图中各小长方形的宽度;
(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)按照类似的研究方法,测得另外一些数据,并整理得到下表:
表中的数据显示,
与
之间存在线性相关关系,请将(2)的结果填入空白栏,并计算
关于
的回归方程.
附公式:
,
.

(1)根据频率分布直方图,计算图中各小长方形的宽度;
(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入![]() | 1 | 2 | 3 | 4 | 5 |
销售收益![]() | 2 | 3 | 2 | | 7 |
表中的数据显示,




附公式:


下列命题中真命题是( )
(1)在
的二项式展开式中,共有
项有理项;
(2)若事件
、
满足
,
,
,则事件
、
是相互独立事件;
(3)根据最近
天某医院新增疑似病例数据,“总体均值为
,总体方差为
”,可以推测“最近
天,该医院每天新增疑似病例不超过
人”.
(1)在


(2)若事件







(3)根据最近





A.(1)(2) | B.(1)(3) | C.(2)(3) | D.(1)(2)(3) |
春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.

(1)求这50天超市日销售量
的平均数;(视频率为概率,以各组区间的中点值代表该组的值)
(2)先从日销售在
,
,
内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在
内的概率.

(1)求这50天超市日销售量

(2)先从日销售在




为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:

(1)由频率分布直方图,估计这100人年龄的平均数;
(2)根据以上统计数据填写下面的2
2列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
参考数据:


(1)由频率分布直方图,估计这100人年龄的平均数;
(2)根据以上统计数据填写下面的2

| 45岁以下 | 45岁以上 | 总计 |
不支持 | | | |
支持 | | | |
总计 | | | |
参考数据:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
某市高中某学科竞赛中,某区
名考生的参赛成绩的频率分布直方图如图所示.

(1)求这
名考生的平均成绩
(同一组中数据用该组区间中点值作代表);
(2)记
分以上为合格,
分及以下为不合格,结合频率分布直方图完成下表,能否在犯错误概率不超过
的前提下认为该学科竞赛成绩与性别有关?
附:
.


(1)求这


(2)记



| 不合格 | 合格 | 合计 |
男生 | ![]() | | |
女生 | | ![]() | |
合计 | | | ![]() |
附:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

垃圾分一分,城市美十分;垃圾分类,人人有责.某市为进一步推进生活垃圾分类工作,调动全民参与的积极性,举办了“垃圾分类游戏挑战赛”.据统计,在为期
个月的活动中,共有
万人次参与.为鼓励市民积极参与活动,市文明办随机抽取
名参与该活动的网友,以他们单次游戏得分作为样本进行分析,由此得到如下频数分布表:
(1)根据数据,估计参与活动的网友单次游戏得分的平均值及标准差(同一组中的数据用该组区间的中点值作代表);(其中标准差的计算结果要求精确到
)
(2)若要从单次游戏得分在
、
、
的三组参与者中,用分层抽样的方法选取
人进行电话回访,再从这
人中任选
人赠送话费,求此
人单次游戏得分不在同一组内的概率.
附:
,
.



单次游戏得分 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据数据,估计参与活动的网友单次游戏得分的平均值及标准差(同一组中的数据用该组区间的中点值作代表);(其中标准差的计算结果要求精确到

(2)若要从单次游戏得分在







附:


我国已进入新时代中国特色社会主义时期,人民生活水平不断提高.某市随机统计了城区若干户市民十月人均生活支出比九月人均生活支出增加量(记为P元)的情况,并根据统计数据制成如图频率分布直方图.

(1)根据频率分布直方图估算P的平均值
;
(2)若该市城区有4户市民十月人均生活支出比九月人均生活支出分别增加了42元,50元,52元,60元,从这4户中随机抽取2户,求这2户P值的和超过100元的概率.

(1)根据频率分布直方图估算P的平均值

(2)若该市城区有4户市民十月人均生活支出比九月人均生活支出分别增加了42元,50元,52元,60元,从这4户中随机抽取2户,求这2户P值的和超过100元的概率.
为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:

并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:
(1)根据图中的数据,试估计该款手机的平均使用时间;
(2)请将表格中的数据补充完整,并根据表中数据,判断是否有99.9%的把握认为“愿意购买该款手机”与“市民的年龄”有关.
参考公式:
,其中
.
参考数据:

并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:
| 愿意购买该款手机 | 不愿意购买该款手机 | 总计 |
40岁以下 | | 600 | |
40岁以上 | 800 | | 1000 |
总计 | 1200 | | |
(1)根据图中的数据,试估计该款手机的平均使用时间;
(2)请将表格中的数据补充完整,并根据表中数据,判断是否有99.9%的把握认为“愿意购买该款手机”与“市民的年龄”有关.
参考公式:


参考数据:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
如图是某体育比赛现场上评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别是( )


A.5和1.6 | B.85和1.6 | C.85和0.4 | D.5和0.4 |