- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- + 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如图.

(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;
(2)根据以上抽样调查数据,回答以下问题:
(ⅰ)为了解如何降低各商家的送餐时间,我们先从这100家商家里选出平均送达时间不超过20分钟的商家,然后再从中随机挑选两家进行跟踪研究,求恰好所抽中的商家均为使用B款软件的概率.
(ⅱ)如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?并说明理由.

(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;
(2)根据以上抽样调查数据,回答以下问题:
(ⅰ)为了解如何降低各商家的送餐时间,我们先从这100家商家里选出平均送达时间不超过20分钟的商家,然后再从中随机挑选两家进行跟踪研究,求恰好所抽中的商家均为使用B款软件的概率.
(ⅱ)如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?并说明理由.
甲、乙、丙、丁四人参加运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示:
则参加运动会的最佳人选应为________.
| 甲 | 乙 | 丙 | 丁 |
平均环数 | 9 | 9.3 | 9.3 | 8.5 |
方差![]() | 3.5 | 3.5 | 3.8 | 4 |
则参加运动会的最佳人选应为________.
甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如下表:
从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是( )
| 甲 | 乙 | 丙 | 丁 |
平均成绩![]() | 86 | 89 | 89 | 85 |
方差![]() | 2.1 | 3.5 | 2.1 | 5.6 |
从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是( )
A.甲 | B.乙 | C.丙 | D.丁 |
基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率
进行了统计,结果如表:
请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率
如果不能,请说明理由.
根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元
辆和800元
辆的A,B两款车型,报废年限各不相同
考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:
经测算,平均每辆单车每年可以为公司带来收入500元
不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?
参考数据:
,
,
参考公式:相关系数
回归直线方程
中的斜率和截距的最小二乘估计公式分别为:
,
.

月份 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
月份代码x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 11 | 13 | 16 | 15 | 20 | 21 |






报废年限 车型 | 1年 | 2年 | 3年 | 4年 | 总计 |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年可以为公司带来收入500元

参考数据:



参考公式:相关系数

回归直线方程



2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.颁奖仪式上,国歌奏响!五星红旗升起!团结一心!中国加油!花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是( )
A.中位数 | B.平均数 | C.方差 | D.极差 |
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )
A.甲地:总体均值为3,中位数为4 | B.乙地:中位数为2,众数为3 |
C.丙地:总体均值为2,总体方差为3 | D.丁地:总体均值为1,总体方差大于0 |
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
某奶茶品牌有
个连锁店,这些店铺某月的奶茶销量以及相比上个月的涨幅数据如下图所示.则下面叙述不正确的是( )



A.该月奶茶销量的中位数为![]() ![]() |
B.该月只有![]() ![]() |
C.该月只有![]() ![]() |
D.该月奶茶销量的涨幅由高到低排前三位的店铺依次为![]() |
为了合理调配电力资源,某市欲了解全市50000户居民的日用电量.若通过简单随机抽样从中抽取了300户进行调查,得到其日用电量的平均数为
,则可以推测全市居民用户日用电量的平均数( ).

A.一定为![]() | B.高于![]() | C.低于![]() | D.约为![]() |
运动员参加体操比赛,当评委亮分后,往往是先去掉一个最高分和一个最低分,再计算剩下分数的平均值,这是为了( )
A.减少计算量 | B.避免故障 | C.剔除异常值 | D.活跃赛场气氛 |