某中学团委组织了“纪念抗日战争胜利73周年”的知识竞赛,从参加竞赛的学生中抽出60名学生,将其成绩(均为整数)分成六段,…,后,画出如图所示的部分频率分布直方图.观察图形给出的信息,回答下列问题:

(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次竞赛的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值代表)
当前题号:1 | 题型:解答题 | 难度:0.99
某市在创建国家级卫生城(简称“创卫”)的过程中,相关部门需了解市民对“创卫”工作的满意程度,若市民满意指数不低于0.8(注:满意指数),“创卫”工作按原方案继续实施,否则需进一步整改.为此该部门随机调查了100位市民,根据这100位市民给“创卫”工作的满意程度评分,按以下区间:分为六组,得到如图频率分布直方图:

(1)为了解部分市民给“创卫”工作评分较低的原因,该部门从评分低于60分的市民中随机选取2人进行座谈,求这2人所给的评分恰好都在的概率;
(2)根据你所学的统计知识,判断该市“创卫”工作是否需要进一步整改,并说明理由.
当前题号:2 | 题型:解答题 | 难度:0.99
某学校共有名学生,其中男生人,为了解该校学生在学校的月消费情况,采取分层抽样随机抽取了名学生进行调查,月消费金额分布在之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示:

将月消费金额不低于元的学生称为“高消费群”.
(1)求的值,并估计该校学生月消费金额的平均数(同一组中的数据用该组区间的中点值作代表);
(2)现采用分层抽样的方式从月消费金额落在内的两组学生中抽取人,再从这人中随机抽取人,记被抽取的名学生中属于“高消费群”的学生人数为随机变量,求的分布列及数学期望;
(3)若样本中属于“高消费群”的女生有人,完成下列列联表,并判断是否有的把握认为该校学生属于“高消费群”与“性别”有关?

(参考公式:,其中
当前题号:3 | 题型:解答题 | 难度:0.99
十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:

(1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入近似为样本方差,经计算得,利用该正态分布,求:
(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附参考数据:,若随机变量X服从正态分布,则.
当前题号:4 | 题型:解答题 | 难度:0.99
我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),制作了频率分布直方图,

(Ⅰ)用该样本估计总体:
(1)估计该市居民月均用水量的平均数;
(2)如果希望86%的居民每月的用水量不超出标准,则月均用水量a的最低标准定为多少吨?
(Ⅱ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量,其中月均用水量不超过2.5吨的人数为X,求X的分布列和均值.
当前题号:5 | 题型:解答题 | 难度:0.99
为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照分为5组,其频率分布直方图如图所示.

(1)求图中的值;
(2)估计这种植物果实重量的平均数和方差(同一组中的数据用该组区间的中点值作代表);
(3)已知这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为,求的分布列和数学期望
当前题号:6 | 题型:解答题 | 难度:0.99
某汽车零件加工厂为迎接国庆大促销活动预估国庆七天销售量,该厂工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示,将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)根据频率分布直方图估计该厂的日平均销售量;(每组以中点值为代表)
(2)求未来天内,连续天日销售量不低于吨,另一天日销售量低于吨的概率;
(3)用表示未来天内日销售量不低于吨的天数,求随机变量的分布列、数学期望与方差.
当前题号:7 | 题型:填空题 | 难度:0.99
某城市一社区接到有关部门的通知,对本社区居民用水量进行调研,通过抽样调查的方法获得了100户居民某年的月均用水量(单位:t),通过分组整理数据,得到数据的频率分布直方图如图所示:

(Ⅰ)求图中m的值;并估计该社区居民月均用水量的中位数和平均值.(保留3位小数)
(Ⅱ)用此样本频率估计概率,若从该社区随机抽查3户居民的月均用水量,问恰有2户超过的概率为多少?
(Ⅲ)若按月均用水量分成两个区间用户,按分层抽样的方法抽取10户,每户出一人参加水价调整方案听证会.并从这10人中随机选取3人在会上进行陈述发言,设来自用水量在区间的人数为X,求X的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:
潜伏期(单位:天)







人数







 
(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期与患者年龄有关;
 
潜伏期
潜伏期
总计
50岁以上(含50岁)
 
 

50岁以下
55
 
 
总计
 
 
200
 
(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了名患者,其中潜伏期超过6天的人数最有可能即概率最大)是多少?
附:
 



 



 
,其中.
当前题号:9 | 题型:解答题 | 难度:0.99
某大型企业生产的某批产品细分为个等级,为了了解这批产品的等级分布情况,从仓库存放的件产品中随机抽取件进行检测、分类和统计,并依据以下规则对产品进行打分:级或级产品打分;级或级产品打分;级、级、级或级产品打分;其余产品打分.现在有如下检测统计表:
等级
1
2
3
4
5
6
7
8
9
10
频数
10
90
100
200
200
100
100
100
70
30
 
规定:打分不低于分的为优良级.
(1)①试估计该企业库存的件产品为优良级的概率;
②请估计该企业库存的件产品的平均得分.
(2)从该企业库存的件产品中随机抽取件,请估计这件产品的打分之和为分的概率.
当前题号:10 | 题型:解答题 | 难度:0.99