- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校理科实验班的100名学生在某次期中考试的语文成绩都不低于100分,现将语文成绩分成
五组,其成绩的频率分布直方图如图所示,估计这100名学生语文成绩的平均数(同一组数据用该区间的中点值作代表)( )



A.117 | B.120 | C.123 | D.125 |
某知名电商在
双十一购物狂欢节中成交额再创新高,
月
日单日成交额达
亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的
位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和“购物评价为满意”的年龄层次频数分布表.年龄层次的频率分布直方图:

“购物评价为满意”的年龄层次频数分布表:
(1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);
(2)若年龄在
岁以下的称为“青年买家”,年龄在
岁以上(含
岁)的称为“中年买家”,完成下面的列联表,并判断能否有
的把握认为中、青年买家对此次活动的评价有差异?
附:参考公式:
.






“购物评价为满意”的年龄层次频数分布表:
年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);
(2)若年龄在




| 评价满意 | 评价不满意 | 合计 |
中年买家 | | | |
青年买家 | | | |
合计 | | | ![]() |
附:参考公式:

![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图.若尺寸落在区间(
)之外,则认为该零件属“不合格”的零件,其中
,分别为样本平均数和样本标准差,计算可得:
(同一组中的数据用该组区间的中点值作代表).

(1)若一个零件的尺寸是
,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前3组中抽出6个零件,标上记号,并从这6个零件中再抽取2个,求再次抽取的2个零件中恰有1个尺寸不超过
的概率.




(1)若一个零件的尺寸是

(2)工厂利用分层抽样的方法从样本的前3组中抽出6个零件,标上记号,并从这6个零件中再抽取2个,求再次抽取的2个零件中恰有1个尺寸不超过

某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为_____ .
下列关于概率和统计的几种说法:①10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为
,中位数为
,众数为
,则
,
,
的大小关系为
;②样本4,2,1,0,-2的标准差是2;③在面积为
的
内任选一点
,则随机事件“
的面积小于
”的概率为
;④从写有0,1,2,…,9的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是
.其中正确说法的序号有______.





















(Ⅰ)求这

(Ⅱ)从这




(Ⅲ)以



为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )

①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )

A.①③ | B.①④ | C.②③ | D.②④ |
车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为10.

(1)分别求出
,
的值;
(2)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率;
(3)根据以上茎叶图和你所学的统计知识,分析两组技工的整体加工水平及稳定性.
(注:方差
,其中
为数据
,
,…,
的平均数).

(1)分别求出


(2)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率;
(3)根据以上茎叶图和你所学的统计知识,分析两组技工的整体加工水平及稳定性.
(注:方差




