- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- + 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
茎叶图记录了甲,乙两组各四名同学单位时间内引体向上的次数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(1)如果X=8,求乙组同学单位时间内引体向上次数的平均数和方差;
(2)如果X=9,分别从甲,乙两组中随机选取一名同学,求这两名同学单位时间内引体向上次数和为19的概率.

(1)如果X=8,求乙组同学单位时间内引体向上次数的平均数和方差;
(2)如果X=9,分别从甲,乙两组中随机选取一名同学,求这两名同学单位时间内引体向上次数和为19的概率.
为了庆祝中华人民共和国成立
周年,某车间内举行生产比赛,由甲、乙两组内各随机选取
名技工,在单位时间生产同一种零件,其生产的合格零件数的茎叶图如下:

已知两组所选技工生产的合格零件的平均数均为
.
(1)分别求出
的值;
(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差
和
,并由此估计两组技工的生产水平;
(3)若单位时间内生产的合格零件个数不小于平均数的技工即为“生产能手”,根据以上数据,能否认为该车间50%以上的技工都是生产能手?
(注:方差
,其中
为数据
的平均数).



已知两组所选技工生产的合格零件的平均数均为

(1)分别求出

(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差


(3)若单位时间内生产的合格零件个数不小于平均数的技工即为“生产能手”,根据以上数据,能否认为该车间50%以上的技工都是生产能手?
(注:方差



如图所示的茎叶图记录了甲、乙两位学生
次体育测试的成绩,若这两组数据的平均值相等,极差也相等,则学生乙体育测试的最高成绩为___________.


如图所示的茎叶图记录了甲,乙两支篮球队各
名队员某场比赛的得分数据(单位:分).若这两组数据的中位数相等,且平均值也相等,则
和
的值为( )





A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据单位:件),若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )


A.3,5 | B.7,5 | C.5,7 | D.5,3 |
如图所示的是甲,乙两名篮球运动员在某赛季的前6场比赛得分的茎叶图,设甲、乙两人这6场比赛得分的平均数分别为
、
,标准差分别为
,
,则有( )






A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
某学校数学兴趣班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则
的值是__________;


随着新政策的实施,海淘免税时代于2016年4月8日正式结束,新政策实施后,海外购物的费用可能会增加.为了解新制度对海淘的影响,某网站调查了喜欢海淘的1000名网友,其态度共有两类:第一类是会降低海淘数量,共有400人,第二类是不会降低海淘数量,共有600人,若从这1000人中按照分层抽样的方法抽取10人后进行打分,其打分的茎叶图如下图所示,图中有数据缺失,但已知“第一类”和“第二类”网民打分的均值相等,则“第一类”网民打分的方差为( )


A.159 | B.179 | C.189 | D.209 |
某班A、B两名学生六次数学测验成绩(百分制)如图所示:

①A同学成绩的中位数大于B同学成绩的中位数;
②A同学的平均分比B同学高;
③A同学的平均分比B同学低;
④A同学成绩方差小于B同学的方差,
以上说法中正确的是( )

①A同学成绩的中位数大于B同学成绩的中位数;
②A同学的平均分比B同学高;
③A同学的平均分比B同学低;
④A同学成绩方差小于B同学的方差,
以上说法中正确的是( )
A.③④ | B.①②④ | C.②④ | D.①③④ |