- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一组数据的平均数为
,方差为
,将这组数据的每个数都乘以
得到一组新数据,则下列说法正确的是( )



A.这组新数据的平均数为![]() | B.这组新数据的平均数为![]() |
C.这组新数据的方差为![]() | D.这组新数据的标准差为![]() |
如表是某位同学连续5次周考的数学、物理的成绩,结果如下:
参考公式:
,
,
表示样本均值.
(1)求该生5次月考数学成绩的平均分和物理成绩的方差;
(2)一般来说,学生的数学成绩与物理成绩有较强的线性相关关系,根据上表提供的数据,求两个变量
的线性回归方程.
周次 | 1 | 2 | 3 | 4 | 5 |
数学(![]() | 79 | 81 | 83 | 85 | 87 |
物理(![]() | 77 | 79 | 79 | 82 | 83 |
参考公式:



(1)求该生5次月考数学成绩的平均分和物理成绩的方差;
(2)一般来说,学生的数学成绩与物理成绩有较强的线性相关关系,根据上表提供的数据,求两个变量

下列命题
①命题“若
,则
”的逆命题是真命题;
②若
,
,则
在
上的投影是
;
③在
的二项展开式中,有理项共有4项;
④已知一组正数
,
,
,
的方差为
,则数据
,
,
,
的平均数为4;
⑤复数
的共轭复数是
,则
.
其中真命题的个数为( )
①命题“若


②若





③在

④已知一组正数









⑤复数



其中真命题的个数为( )
A.0 | B.1 | C.2 | D.3 |
为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成
,
,
,
,
,
六组,得到如下频率分布直方图.

(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);
(2)若从答对题数在
内的学生中随机抽取2人,求恰有1人答对题数在
内的概率.







(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);
(2)若从答对题数在


根据统计调查数据显示:某企业某种产品的质量指标值
服从正态分布
,从该企业生产的这种产品(数量很大)中抽取100件,测量这100件产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间
,
,
内的频率之比为
.

(1)求这100件产品质量指标值落在区间
内的频率;
(2)根据频率分布直方图求平均数
(同一组中的数据用该组区间的中点值作代表);
(3)若
取这100件产品指标的平均值
,从这种产品(数量很大)中任取3个,求至少有1个
落在区间
的概率.
参考数据:
,若
,则
;
;
.







(1)求这100件产品质量指标值落在区间

(2)根据频率分布直方图求平均数

(3)若




参考数据:





自贡农科所实地考察,研究发现某贫困村适合种植
,
两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材
的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
药材
的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:

(1)若药材
的单价
(单位:元/公斤)与年份编号
具有线性相关关系,请求出
关于
的回归直线方程,并估计2020年药材
的单价;
(2)用上述频率分布直方图估计药材
的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材
还是药材
?并说明理由.
参考公式:
,
(回归方程
中)



编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
单价(元/公斤) | 18 | 20 | 23 | 25 | 29 |
药材


(1)若药材






(2)用上述频率分布直方图估计药材



参考公式:



一组数据中的每一个数都减去60,得到一组新数据,若求得新数据的平均数为1.2,方差为4.4,则原来数据的平均数和方差分别为( )
A.61.2,4.4 | B.58.8,4.4 | C.61.2,64.4 | D.58.8,55.6 |
一次选拔运动员,测得7名选手的身高(单位:
)分布茎叶图如下,记录的平均身高为
,有一名候选人的身高记录不清楚,其末位数记为
,那么
的值为( )






A.4 | B.3 | C.2 | D.1 |