- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- + 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是抛物线
的焦点.
(Ⅰ)过点
作抛物线
的切线,求切线方程;
(Ⅱ)设
为抛物线
上异于原点的两点,且满足
,延长
分别交抛物线
于点
,求四边形
面积的最小值.


(Ⅰ)过点


(Ⅱ)设







如图,斜率为k的直线l与抛物线y2=4x交于A、B两点,直线PM垂直平分弦AB,且分别交AB、x轴于M、P,已知P(4,0).

(1)求M点的横坐标;
(2) 求
面积的最大值.

(1)求M点的横坐标;
(2) 求

已知抛物线
的焦点与椭圆
的右焦点重合,抛物线
的顶点在坐标原点,过点
的直线
与抛物线
分别相交于
两点.
(1)写出抛物线
的标准方程;
(2)求
面积的最小值.







(1)写出抛物线

(2)求

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线
,弦
过焦点,
为阿基米德三角形,则
的面积的最小值为( )




A.![]() | B.![]() | C.![]() | D.![]() |
已知圆C过定点
,且与直线
相切,圆心C的轨迹为E,曲线E与直线l:
(
)相交于A,B两点.
(1)求曲线E的方程;
(2)当
的面积等于
时,求k的值.




(1)求曲线E的方程;
(2)当

