- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 双曲线中的直线过定点问题
- 双曲线中存在定点满足某条件问题
- + 双曲线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
是
轴正方向的单位向量,设
,
且满足
(1)求点
的轨迹
的方程.
(2)若直线
过点
且法向量为
,直线与轨迹
交于
两点.点
,无论直线
绕点
怎样转动,
是否为定值?如果是,求出定值;如果不是,请说明理由.并求实数
的取值范围





(1)求点


(2)若直线










如图,已知双曲线









(1)求双曲线

(2)过










已知双曲线



(Ⅰ)求双曲线








已知双曲线
的中心为原点
,左、右焦点分别为
、
,离心率为
,点
是直线
上任意一点,点
在双曲线
上,且满足
.
(1)求实数
的值;
(2)证明:直线
与直线
的斜率之积是定值;
(3)若点
的纵坐标为
,过点
作动直线
与双曲线右支交于不同的两点
、
,在线段
上去异于点
、
的点
,满足
,证明点
恒在一条定直线上.










(1)求实数

(2)证明:直线


(3)若点












已知斜率为1的直线1与双曲线C:
相交于B、D两点,且BD的中点为M(1.3)
(Ⅰ)(Ⅰ)求C的离心率;
(Ⅱ)(Ⅱ)设C的右顶点为A,右焦点为F,|DF|·|BF|=17证明:过A、B、D三点的圆与x轴相切.

(Ⅰ)(Ⅰ)求C的离心率;
(Ⅱ)(Ⅱ)设C的右顶点为A,右焦点为F,|DF|·|BF|=17证明:过A、B、D三点的圆与x轴相切.
已知双曲线E:
(a>0,b>0)的渐近线方程为3x±4y=0,且过焦点垂直x轴的直线与双曲线E相交弦长为
,过双曲线E中心的直线与双曲线E交于A,B两点,在双曲线E上取一点C(与A,B不重合),直线AC,BC 的斜率分别为k1,k2,则k1k2等于( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知双曲线
的左、右焦点分别为
,
,过点
的动直线与双曲线相交于
两点.
(1)若动点
满足
(其中
为坐标原点),求点
的轨迹方程;
(2)在
轴上是否存在定点
,使
·
为常数?若存在,求出点
的坐标;若不存在,请说明理由.





(1)若动点




(2)在





双曲线
,M、N为双曲线上关于原点对称的两点,P为双曲线上的点,且直线PM、PN斜率分别为
、
,若
,则双曲线离心率为




A.![]() | B.2 | C.![]() | D.![]() |