- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 双曲线中的直线过定点问题
- 双曲线中存在定点满足某条件问题
- 双曲线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动圆
过点
,并且与圆
:
相外切,设动圆的圆心
的轨迹为
.
(1)求曲线
的方程;
(2)过动点
作直线与曲线
交于
两点,当
为
的中点时,求
的值;
(3)过点
的直线
与曲线
交于
两点,设直线
:
,点
,直线
交
于点
,求证:直线
经过定点,并求出该定点的坐标.






(1)求曲线

(2)过动点






(3)过点











已知双曲线方程
.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于
两点,且
两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于


已知双曲线
的中心在坐标原点,焦点在
轴上,离心率
,虚轴长为
.
(1)求双曲线
的标准方程;
(2)若直线
与双曲线
相交于
两点(
均异于左、右顶点),且以
为直径的圆过双曲线
的左顶点
,求证:直线
过定点,并求出定点的坐标.




(1)求双曲线

(2)若直线








已知双曲线
,点
在曲线
上,曲线
的离心率为
,点
为曲线
上易于点A的任意两点,
为坐标原点.
(1)求曲线
上方程;
(2)若
为曲线
的焦点,求
最大值;
(3)若以
为直径的圆过点
,求证:直线
过定点,并求出定点坐标.








(1)求曲线

(2)若



(3)若以



已知双曲线
,过点P(1,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?如果能,求出直线l的方程;如果不能,请说明理由.

已知动圆
过点
并且与圆
相外切,动圆圆心
的轨迹为
。
(1)求曲线
的轨迹方程;
(2)过点
的直线
与轨迹
交于
、
两点,设直线
,设点
,直线
交
于
,求证:直线
经过定点.





(1)求曲线

(2)过点











已知动圆
过点
并且与圆
相外切,动圆圆心
的轨迹为
.
(1)求曲线
的轨迹方程;
(2)过点
的直线
与轨迹
交于
、
两点,设直线
,点
,直线
交
于
,求证:直线
经过定点
.





(1)求曲线

(2)过点












双曲线
:
的左右顶点分别为
,
,动直线
垂直
的实轴,且交
于不同的两点
,直线
与直线
的交点为
.
(1)求点
的轨迹
的方程;
(2)过点
作
的两条互相垂直的弦
,
,证明:过两弦
,
中点的直线恒过定点.











(1)求点


(2)过点






如图:双曲线
:
的左、右焦点分别为
,
,过
作直线
交
轴于点
.

(1)当直线
平行于
的一条渐近线时,求点
到直线
的距离;
(2)当直线
的斜率为
时,在
的右支上是否存在点
,满足
?若存在,求出
点的坐标;若不存在,说明理由;
(3)若直线
与
交于不同两点
、
,且
上存在一点
,满足
(其中
为坐标原点),求直线
的方程.









(1)当直线




(2)当直线






(3)若直线








