- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的左、右焦点
,
,
是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆恰好经过椭圆的焦点,且
的周长为
.
(1)求椭圆
的方程;
(2)设直线
是圆
:
上动点
处的切线,
与椭圆
交与不同的两点
,
,证明:
的大小为定值.







(1)求椭圆

(2)设直线









已知圆
和定点
,其中点
是该圆的圆心,
是圆
上任意一点,线段
的垂直平分线交
于点
,设动点
的轨迹为
.
(1)求动点
的轨迹方程
;
(2)设曲线
与
轴交于
两点,点
是曲线
上异于
的任意一点,记直线
,
的斜率分别为
,
.证明:
是定值;
(3)设点
是曲线
上另一个异于
的点,且直线
与
的斜率满足
,试探究:直线
是否经过定点?如果是,求出该定点,如果不是,请说明理由.










(1)求动点


(2)设曲线











(3)设点







已知椭圆
的右焦点为
,过
的直线
与
交于
,
两点,点
的坐标为
.当
轴时,
的面积为
.
(1)求椭圆
的标准方程;
(2)设直线
、
的斜率分别为
、
,证明:
.












(1)求椭圆

(2)设直线





已知椭圆
的方程为:
, 且平行四边形
的三个顶点
都在椭圆
上,
为坐标原点.
(1)当弦
的中点为
时,求直线
的方程;
(2)证明:平行四边形
的面积为定值.






(1)当弦



(2)证明:平行四边形

在平面直角坐标系xOy中,已知R为圆
上的一动点,R在x轴,y轴上的射影分别为点S,T,动点P满足
,记动点P的轨迹为曲线C,曲线C与x轴交于A,B两点.
(1)求曲线C的方程;
(2)已知直线AP,BP分别交直线
于点M,N,曲线C在点Р处的切线与线段MN交于点Q,求
的值.


(1)求曲线C的方程;
(2)已知直线AP,BP分别交直线


已知椭圆
的右焦点为
,离心率为
。
(1)求椭圆
的标准方程;
(2)
是椭圆
上不同的三点,若直线
的斜率之积为
,试问从
两点的横坐标之和是否为定值?若是,求出这个定值;若不是,请说明理由。



(1)求椭圆

(2)





已知椭圆
的左、右焦点为
,点
在椭圆
上.
(1)设点
到直线
的距离为
,证明:
为定值;
(2)若
是椭圆
上的两个动点(都不与
重合),直线
的斜率互为相反数,求直线
的斜率(结果用
表示)




(1)设点




(2)若






已知椭圆
的四个顶点围成的菱形的面积为
,椭圆的一个焦点为圆
的圆心.
(1)求椭圆的方程;
(2)若M,N为椭圆上的两个动点,直线OM,ON的斜率分别为
,当
时,△MON的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.



(1)求椭圆的方程;
(2)若M,N为椭圆上的两个动点,直线OM,ON的斜率分别为

