- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点




(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,



(3)在(2)的条件下,当


已知椭圆中心在原点,焦点在x轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;
(2)已知直线l与椭圆相交于P、Q两点,O为原点,且OP⊥OQ.试探究点O到直线l的距离是否为定值?若是,求出这个定值;若不是,说明理由.


(1)求椭圆的标准方程;
(2)已知直线l与椭圆相交于P、Q两点,O为原点,且OP⊥OQ.试探究点O到直线l的距离是否为定值?若是,求出这个定值;若不是,说明理由.
已知椭圆
的左右焦点分别为
,点
为短轴的一个端点,
.
(1)求椭圆
的方程;
(2)如图,过右焦点
,且斜率为
的直线
与椭圆
相交于
两点,
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
.
求证:
为定值.




(1)求椭圆

(2)如图,过右焦点













求证:


已知椭圆
的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形.
(1)求椭圆的方程;
(2)若
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
.证明:
为定值;
(3)在(2)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,请说明理由.




(1)求椭圆的方程;
(2)若






(3)在(2)的条件下,试问







已知椭圆
:
的离心率为
,且过点
,设椭圆的右准线
与
轴的交点为
,椭圆的上顶点为
,直线
被以原点为圆心的圆
所截得的弦长为
.

⑴求椭圆
的方程及圆
的方程;
⑵若
是准线
上纵坐标为
的点,求证:存在一个异于
的点
,对于圆
上任意一点
,有
为定值;且当
在直线
上运动时,点
在一个定圆上.












⑴求椭圆


⑵若











给定椭圆
>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点.求证:
⊥
.










(1)求椭圆

(2)点








如图,已知在坐标平面内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为
点
坐标为
(
为常数),

(Ⅰ)求以M、N为焦点且过点P的椭圆方程;
(Ⅱ)过点B(﹣1,0)的直线l交椭圆于C、D两点,交直线x=﹣4于点E,点B、E分
的比分别为
、λ2,求
+λ2的值






(Ⅰ)求以M、N为焦点且过点P的椭圆方程;
(Ⅱ)过点B(﹣1,0)的直线l交椭圆于C、D两点,交直线x=﹣4于点E,点B、E分



有对称中心的曲线叫做有心曲线,过有心曲线中心的弦叫做有心曲线的直径.定理:如果圆
上异于一条直径两个端点的任意一点与这条直径两个端点连线的斜率存在,则这两条直线的斜率乘积为定值-1.写出该定理在有心曲线
中的推广 .


椭圆有两顶点A(﹣1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.

(Ⅰ)当|CD|=
时,求直线l的方程;
(Ⅱ)当点P异于A、B两点时,求证:
为定值.

(Ⅰ)当|CD|=

(Ⅱ)当点P异于A、B两点时,求证:
