- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(1)求椭圆
及其“准圆”的方程;
(2)若椭圆
的“准圆”的一条弦
(不与坐标轴垂直)与椭圆
交于
、
两点,试证明:当
时,试问弦
的长是否为定值,若是,求出该定值;若不是,请说明理由.










(1)求椭圆

(2)若椭圆







已知
、
分别是直线
和
上的两个动点,线段
的长为
,
是
的中点.
(1)求动点
的轨迹
的方程;
(2)过点
任意作直线
(与
轴不垂直),设
与(1)中轨迹
交于
两点,与
轴交于
点.若
,
,证明:
为定值.








(1)求动点


(2)过点











如图,椭圆
:
,a,b为常数),动圆
,
.点
分别为
的左,右顶点,
与
相交于A,B,C,D四点.
(1)求直线
与直线
交点M的轨迹方程;
(2)设动圆
与
相交于
四点,其中
,
.若矩形
与矩形
的面积相等,证明:
为定值.








(1)求直线


(2)设动圆









如图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
.已知
和
都在椭圆上,其中
为椭圆的离心率.
(1)求椭圆的方程;
(2)设
是椭圆上位于
轴上方的两点,且直线
与直线
平行,
与
交于点P.
(i)若
,求直线
的斜率;
(ii)求证:
是定值.







(1)求椭圆的方程;
(2)设






(i)若


(ii)求证:


已知椭圆
=1(a>b>0)的左、右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.

(1)求椭圆的方程;
(2)若C,D分别是椭圆的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:
为定值.
(3)在(2)的条件下,试问x轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP,MQ的交点?若存在,求出点Q的坐标;若不存在,请说明理由.


(1)求椭圆的方程;
(2)若C,D分别是椭圆的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:

(3)在(2)的条件下,试问x轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP,MQ的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
设椭圆



(Ⅰ)求椭圆

(Ⅱ)已知过点





(Ⅲ)过点





椭圆
:
的左、右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
是椭圆
上除长轴端点外的任一点,连接
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点
作斜率为
的直线
,使
与椭圆
有且只有一个公共点,设直线的
斜率分别为
。若
,试证明
为定值,并求出这个定值。








(Ⅰ)求椭圆

(Ⅱ)点








(Ⅲ)在(Ⅱ)的条件下,过点









已知椭圆
的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于
、
两点,试问,是否存在
轴上的点
,使得对任意的
,
为定值,若存在,求出
点的坐标,若不存在,说明理由.

(1)求椭圆

(2)已知直线









给定椭圆
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.

(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的动点,过点
作椭圆的切线
交“准圆”于点
.
①当点
为“准圆”与
轴正半轴的交点时,求直线
的方程并证明
;
②求证:线段
的长为定值.










(1)求椭圆

(2)点





①当点




②求证:线段
