刷题首页
题库
高中数学
题干
有对称中心的曲线叫做有心曲线,过有心曲线中心的弦叫做有心曲线的直径.定理:如果圆
上异于一条直径两个端点的任意一点与这条直径两个端点连线的斜率存在,则这两条直线的斜率乘积为定值-1.写出该定理在有心曲线
中的推广 .
上一题
下一题
0.99难度 填空题 更新时间:2011-05-18 05:51:04
答案(点此获取答案解析)
同类题1
已知椭圆
上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,
,
三点共线,求
的值.
同类题2
在直角坐标系
中,椭圆
的离心率为
,椭圆短轴上的一个顶点为
.
(1)求椭圆
的方程;
(2)已知点
,动直线
与椭圆
相交于
两点,若直线
的斜率均存在,求证:直线
的斜率依次成等差数列.
同类题3
已知
是椭圆
上的一点,
是该椭圆的左右焦点,且
.
(1)求椭圆
的方程;
(2)设点
是椭圆
上与坐标原点
不共线的两点,直线
的斜率分别为
,且
.试探究
是否为定值,若是,求出定值,若不是,说明理由.
同类题4
已知点
,
是椭圆
上两个不同的点,
,
,
到直线
的距离顺次成等差数列.
(I)求
的值;
(II)线段
的中垂线
交
轴于
点,求直线
的方程.
同类题5
已知椭圆C:
的右焦点为
,过点F的直线交椭圆C于A,B两点,且AB的中点坐标为
求椭圆C的方程;
若椭圆的下顶点为D,经过点
且斜率为k的直线与椭圆C交于不同两点P,
(均异于点
),证明:直线DP与DQ的斜率之和为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题
圆锥曲线中的类比推理