刷题首页
题库
高中数学
题干
椭圆有两顶点A(﹣1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.
(Ⅰ)当|CD|=
时,求直线l的方程;
(Ⅱ)当点P异于A、B两点时,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2011-06-15 02:03:42
答案(点此获取答案解析)
同类题1
已知,椭圆
C
过点
,两个焦点为
,
,
E
,
F
是椭圆
C
上的两个动点,如果直线
AE
的斜率与
AF
的斜率互为相反数,直线
EF
的斜率为
,直线
l
与椭圆
C
相切于点
A
,斜率为
.
求椭圆
C
的方程;
求
的值.
同类题2
已知点
为平面内一定点,动点
为平面内曲线
上的任意一点,且满足
,过原点的直线交曲线
于
两点.
(1)证明:直线
与直线
的斜率之积为定值;
(2)设直线
,
交直线
于
、
两点,求线段
长度的最小值.
同类题3
如图椭圆
的上下顶点为A、B,直线
:
,点P是椭圆上异于点A、B的任意一点,连结AP并延长交直线
于点N,连结BP并延长交直线
于点M,设AP、BP所在直线的斜率分别为
,若椭圆的离心率为
,且过点
,(1)求
的值,并求
最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。
同类题4
已知椭圆
:
的长轴长是离心率的两倍,直线
:
交
于
,
两点,且
的中点横坐标为
.
(1)求椭圆
C
的方程;
(2)若
,
是椭圆
上的点,
为坐标原点,且满足
,求证:
,
斜率的平方之积是定值.
同类题5
已知椭圆
,
为椭圆的左右焦点,过右焦点垂直于
轴的直线交椭圆于
两点,若
,且椭圆离心率
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆上两个不同点,
为
中点,
关于原点和
轴的对称点分别是
,直线
在
轴的截距为
,直线
在
轴的截距为
,试证明:
为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题