刷题首页
题库
高中数学
题干
给定椭圆
>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点.求证:
⊥
.
上一题
下一题
0.99难度 解答题 更新时间:2011-03-14 03:57:43
答案(点此获取答案解析)
同类题1
已知椭圆
的上顶点为
,点
,
是
上且不在
轴上的点,直线
与
交于另一点
.若
的离心率为
,
的最大面积等于
.
(1)求
的方程;
(2)若直线
分别与
轴交于点
,判断
是否为定值.
同类题2
设椭圆
的离心率为
,已知
、
,且原点到直线
的距离等于
.,
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知过点
的直线交椭圆
于
、
两点,若存在动点
,使得直线
、
、
的斜率依次成等差数列,试确定点
的轨迹方程.
同类题3
如图,椭圆
:
的离心率是
,点
在短轴
上,且
(1)求椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
,
两点.是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由.
同类题4
已知椭圆
的左、右顶点分别为
,长轴长为4,离心率为
.过右焦点
的直线
交椭圆
于
两点(均不与
重合),记直线
的斜率分别为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在常数
,当直线
变动时,总有
成立?若存在,求出
的值;若不存在,说明理由.
同类题5
如图,菱形
的面积为
,斜率为
的直线
交
轴于点
,且
,以线段
为长轴,
为短轴的椭圆与直线
相交于
两点(
与
在
轴同侧).
(1)求椭圆的方程;
(2)求证:
与
的交点在定直线
上.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题