已知椭圆的右焦点为,且点在椭圆C上.
(1)求椭圆C的标准方程;
(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为不在坐标轴上),若直线x轴,y轴上的截距分别为,证明:为定值;
(3)若是椭圆上不同两点,轴,圆E,且椭圆上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
已知椭圆的离心率为,点A为该椭圆的左顶点,过右焦点的直线l与椭圆交于BC两点,当轴时,三角形ABC的面积为18.

求椭圆的方程;
如图,当动直线BC斜率存在且不为0时,直线分别交直线ABAC于点MN,问x轴上是否存在点P,使得,若存在求出点P的坐标;若不存在说明理由.
当前题号:2 | 题型:解答题 | 难度:0.99
已知椭圆的离心率,左顶点为.过点作直线交椭圆于另一点,交轴于点,点为坐标原点.
(1)求椭圆的方程:
(2)已知的中点,是否存在定点,对任意的直线恒成立?若存在,求出点的坐标;若不存在说明理由;
(3)过点作直线的平行线与椭圆相交,为其中一个交点,求的最大值.
当前题号:3 | 题型:解答题 | 难度:0.99
已知椭圆的左、右焦点分别为,离心率为为椭圆上一动点(异于左右顶点),面积的最大值为
(1)求椭圆的方程;
(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)若过点的直线与曲线交于两点,曲线上是否存在点使得四边形为平行四边形?若存在,求直线的方程,若不存在,说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
已知椭圆长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线过点,且与椭圆相交于另一点.
(1)求椭圆的方程;
(2)若线段长为,求直线的倾斜角;
(3)点在线段的垂直平分线上,且,求的值.
当前题号:6 | 题型:解答题 | 难度:0.99
已知椭圆,直线与椭圆相交于两点,的中点.
(1)若直线与直线为坐标原点)的斜率之积为,求椭圆的方程;
(2)在(1)的条件下,轴上是否存在定点使得当变化时,总有为坐标原点).若存在,求出定点的坐标;若不存在,请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
已知椭圆C=1(a>b>0)的两个焦点分别为F1F2,短轴的一个端点为P,△PF1F2内切圆的半径为,设过点F2的直线l与被椭圆C截得的线段为RS,当lx轴时,|RS|=3.
(1) 求椭圆C的标准方程;
(2) 若点M(0,m),(),过点M的任一直线与椭圆C相交于两点
A.B
y轴上是否存在点N0n)使∠ANM=∠BNM恒成立?若存在,判断mn应满足关系;若不存在,说明理由。(3) 在(2)条件下m=1时,求△ABN面积的最大值。
当前题号:8 | 题型:解答题 | 难度:0.99
已知椭圆经过点.离心率.

(1)求椭圆C的标准方程;
(2)若MN分别是椭圆长轴的左、右端点,动点D满足,连接MD交椭圆于点Q.问:x轴上是否存在异于点M的定点G,使得以QD为直径的圆恒过直线QNGD的交点?若存在,求出点G的坐标;若不存在,说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
已知椭圆为坐标原点,为椭圆上任意一点,分别为椭圆的左、右焦点,且依次成等比数列,其离心率为.过点的动直线与椭圆相交于两点.
(1)求椭圆的标准方程;
(2)当时,求直线的方程;
(3)在平面直角坐标系中,若存在与点不同的点,使得成立,求点的坐标.
当前题号:10 | 题型:解答题 | 难度:0.99