- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
的离心率
,椭圆C上的点到其左焦点的最大距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A
作直线
与椭圆相交于点B,则
轴上是否存在点P,使得线段
,且
?若存在,求出点P坐标;否则请说明理由.



(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A





椭圆
的焦点是
,
,且过点
.
(1)求椭圆
的标准方程;
(2)过左焦点
的直线
与椭圆
相交于
、
两点,
为坐标原点.问椭圆
上是否存在点
,使线段
和线段
相互平分?若存在,求出点
的坐标,若不存在,说明理由.




(1)求椭圆

(2)过左焦点











设椭圆
的左、右焦点分别为
,过
的直线交椭圆于
两点,若椭圆C的离心率为
,
的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线
与椭圆C交于
两点,是否存在实数k使得以
为直径的圆恰好经过坐标原点?若存在,求出k的值;若不存在,请说明理由.







(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线



已知椭圆C的焦点在x轴上,左、右焦点分别为
,焦距等于8,并且经过点
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为
,点M在椭圆上,且异于椭圆的顶点,点Q为直线
与y轴的交点,若
,求直线
的方程.


(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为




已知椭圆
的方程为
,圆
与
轴相切于点
,与
轴正半轴相交于
、
两点,且
,如图1.

(1)求圆
的方程;
(2)如图1,过点
的直线
与椭圆
相交于
、
两点,求证:射线
平分
;
(3)如图2所示,点
、
是椭圆
的两个顶点,且第三象限的动点
在椭圆
上,若直线
与
轴交于点
,直线
与
轴交于点
,试问:四边形
的面积是否为定值?若是,请求出这个定值,若不是,请说明理由.










(1)求圆

(2)如图1,过点







(3)如图2所示,点












已知椭圆C的离心率为
,长轴的左、右端点分别为
,
.

(1)求椭圆C的方程;
(2)设直线
与椭圆C交于P,Q两点,直线
,
交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.




(1)求椭圆C的方程;
(2)设直线



如图,在平面直角坐标系
中,椭圆
:
上的动点到一个焦点的最远距离与最近距离分别是
与
,
的左顶点为
与
轴平行的直线与椭圆
交于
、
两点,过
、
两点且分别与直线
、
垂直的直线相交于点
.

(1)求椭圆
的标准方程;
(2)证明点
在一条定直线上运动,并求出该直线的方程;
(3)求
面积的最大值.

















(1)求椭圆

(2)证明点

(3)求

已知点
,直线
:
,平面上有一动点
,记点
到
的距离为
.若动点
满足:
.
(1)求点
的轨迹方程;
(2)过
的动直线
与点
的轨迹交于
,
两点,试问:在
轴上,是否存在定点
,使得
为常数?若存在,求出点
的坐标;若不存在,说明理由.









(1)求点

(2)过








