- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
经过点
且离心率为
.
(1)求椭圆方程;
(2)是否存在直线
,使椭圆
上存在不同两点
关于该直线对称?若存在,求
的取值范围;若不存在,请说明理由.





(1)求椭圆方程;
(2)是否存在直线




已知抛物线
的焦点为椭圆
的右焦点,且椭圆长轴的长为4,
、
是椭圆上的两点;
(1)求椭圆标准方程;
(2)若直线
经过点
,且
,求直线
的方程;
(3)若动点
满足:
,直线
与
的斜率之积为
,是否存在两个定点
、
,使得
为定值?若存在,求出
、
的坐标;若不存在,请说明理由;




(1)求椭圆标准方程;
(2)若直线




(3)若动点










如图,在平面直角坐标系
中,已知椭圆
:
的离心率
,左顶点为
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.

(1)求椭圆
的方程;
(2)已知
为
的中点,是否存在定点
,对于任意的
都有
,若存在,求出点
的坐标;若不存在说明理由;
(3)若过
点作直线
的平行线交椭圆
于点
,求
的最小值.













(1)求椭圆

(2)已知






(3)若过





已知椭圆的中心在原点,焦点在x轴上
分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且
.
(1)求椭圆方程;
(2)对于x轴上的某一点T,过T作不与坐标轴平行的直线L交椭圆于
两点,若存在x轴上的点S,使得对符合条件的L恒有
成立,我们称S为T的一个配对点,当T为左焦点时,求T的配对点的坐标;
(3)在(2)条件下讨论当T在何处时,存在有配对点?


(1)求椭圆方程;
(2)对于x轴上的某一点T,过T作不与坐标轴平行的直线L交椭圆于


(3)在(2)条件下讨论当T在何处时,存在有配对点?
已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.

(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.











(1)求

(2)试问:是否存在定点



在平面直角坐标系
中,对于点
、直线
,我们称
为点
到直线
的方向距离.
(1)设椭圆
上的任意一点
到直线
,
的方向距离分别为
、
,求
的取值范围.
(2)设点
、
到直线
的方向距离分别为
、
,试问是否存在实数
,对任意的
都有
成立?若存在,求出
的值;不存在,说明理由.
(3)已知直线
和椭圆
,设椭圆
的两个焦点
,
到直线
的方向距离分别为
、
满足
,且直线
与
轴的交点为
、与
轴的交点为
,试比较
的长与
的大小.






(1)设椭圆







(2)设点









(3)已知直线
















已知椭圆
:
的左、右顶点分别为
,
,
为坐标原点,且
.

(1)求椭圆
的标准方程;
(2)若点
为直线
在第一象限内的一点,连接
交椭圆于点
,连接
并延长交椭圆于点
.若直线
的斜率为1,求
点的坐标.







(1)求椭圆

(2)若点








已知椭圆
的左、右焦点分别为
,点
是椭圆上任意一点,
的最小值为
,且该椭圆的离心率为
.
(1)求椭圆
的方程;
(2)若
是椭圆
上不同的两点,且
,若
,试问直线
是否经过一个定点?若经过定点,求出该定点的坐标;若不经过定点,请说明理由.






(1)求椭圆

(2)若





已知椭圆
,其左右顶点分别为
,
,上下顶点分别为
,
.圆
是以线段
为直径的圆.
(1)求圆
的方程;
(2)若点
,
是椭圆上关于
轴对称的两个不同的点,直线
,
分别交
轴于点
、
,求证:
为定值;
(3)若点
是椭圆Γ上不同于点
的点,直线
与圆
的另一个交点为
.是否存在点
,使得
?若存在,求出点
的坐标,若不存在,说明理由.







(1)求圆

(2)若点









(3)若点








已知椭圆E:
过点(0,1)且离心率
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.


(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.