已知椭圆:经过点且离心率为.
(1)求椭圆方程;
(2)是否存在直线,使椭圆上存在不同两点关于该直线对称?若存在,求的取值范围;若不存在,请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
已知抛物线的焦点为椭圆的右焦点,且椭圆长轴的长为4,是椭圆上的两点;
(1)求椭圆标准方程;
(2)若直线经过点,且,求直线的方程;
(3)若动点满足:,直线的斜率之积为,是否存在两个定点,使得为定值?若存在,求出的坐标;若不存在,请说明理由;
当前题号:2 | 题型:解答题 | 难度:0.99
如图,在平面直角坐标系中,已知椭圆的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点

(1)求椭圆的方程;
(2)已知的中点,是否存在定点,对于任意的都有,若存在,求出点的坐标;若不存在说明理由;
(3)若过点作直线的平行线交椭圆于点,求的最小值.
当前题号:3 | 题型:解答题 | 难度:0.99
已知椭圆的中心在原点,焦点在x轴上分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且
(1)求椭圆方程;
(2)对于x轴上的某一点TT作不与坐标轴平行的直线L交椭圆于两点,若存在x轴上的点S,使得对符合条件的L恒有成立,我们称ST的一个配对点,当T为左焦点时,求T的配对点的坐标;
(3)在(2)条件下讨论当T在何处时,存在有配对点?
当前题号:4 | 题型:解答题 | 难度:0.99
已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,延长交椭圆于点的周长为8.

(1)求的离心率及方程;
(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
在平面直角坐标系中,对于点、直线,我们称为点到直线的方向距离.
(1)设椭圆上的任意一点到直线的方向距离分别为,求的取值范围.
(2)设点到直线的方向距离分别为,试问是否存在实数,对任意的都有成立?若存在,求出的值;不存在,说明理由.
(3)已知直线和椭圆,设椭圆的两个焦点到直线的方向距离分别为满足,且直线轴的交点为、与轴的交点为,试比较的长与的大小.
当前题号:6 | 题型:解答题 | 难度:0.99
已知椭圆:的左、右顶点分别为,,为坐标原点,且.

(1)求椭圆的标准方程;
(2)若点为直线在第一象限内的一点,连接交椭圆于点,连接并延长交椭圆于点.若直线的斜率为1,求点的坐标.
当前题号:7 | 题型:解答题 | 难度:0.99
已知椭圆的左、右焦点分别为,点是椭圆上任意一点,的最小值为,且该椭圆的离心率为.
(1)求椭圆的方程;
(2)若是椭圆上不同的两点,且,若,试问直线是否经过一个定点?若经过定点,求出该定点的坐标;若不经过定点,请说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
已知椭圆,其左右顶点分别为,,上下顶点分别为,.圆是以线段为直径的圆. 
(1)求圆的方程;
(2)若点,是椭圆上关于轴对称的两个不同的点,直线,分别交轴于点,求证:为定值;
(3)若点是椭圆Γ上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标,若不存在,说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
已知椭圆E:过点(0,1)且离心率.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l与两定直线l1:xy=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
当前题号:10 | 题型:解答题 | 难度:0.99