刷题首页
题库
高中数学
题干
设椭圆
的左、右焦点分别为
,过
的直线交椭圆于
两点,若椭圆
C
的离心率为
,
的周长为8.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)已知直线
与椭圆
C
交于
两点,是否存在实数
k
使得以
为直径的圆恰好经过坐标原点?若存在,求出
k
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-01 11:11:55
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴长为4,且椭圆
与圆
:
的公共弦长为
.
(1)求椭圆
的方程
(2)椭圆
的左右两个顶点分别为
,直线
与椭圆
交于
两点,且满足
,求
的值.
同类题2
已知椭圆
以
,
为左右焦点,且与直线
:
相切于点
.
(1)求椭圆的方程及点
的坐标;
(2)若直线
:
与椭圆交于
两点,且
交
于点
(异于点
),求证:线段长
,
,
成等比数列.
同类题3
已知椭圆
的左、右顶点分别为
,左焦点为
,点
为椭圆
上任一点,若直线
与
的斜率之积为
,且椭圆
经过点
.
(1)求椭圆的方程;
(2)若
交直线
于
两点,过左焦点
作以
为直径的圆的切线.问切线长是否为定值,若是,请求出定值;若不是,请说明理由.
同类题4
已知椭圆
的左、右焦点分别为
,
,直线
与椭圆
在第一象限内的交点是
,且
轴,
.
(1)求椭圆
的方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
,
两点,与椭圆
相交于
,
两点,且
?若存在,求出直线
的方程;若不存在,说明理由.
同类题5
给定椭圆
,称圆心在原点
,半径为
的圆是椭圆
C
的“准圆”.若椭圆
C
的一个焦点为
,其短轴上的一个端点到F的距离为
.
(I)求椭圆
C
的方程和其“准圆”方程;
(II )点
P
是椭圆
C
的“准圆”上的一个动点,过点
P
作直线
,使得
与椭圆
C
都只有一个交点,且
分别交其“准圆”于点
M
,
N
.
(1)当
P
为“准圆”与
轴正半轴的交点时,求
的方程;
(2)求证:|
MN
|为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据离心率求椭圆的标准方程