刷题首页
题库
高中数学
题干
已知椭圆
(
)的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于不同的两点
,
,试问在
轴上是否存在定点
使得直线
与直线
恰关于
轴对称?若存在,求出点
的坐标;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-05 10:27:37
答案(点此获取答案解析)
同类题1
如图所示,A,B分别是椭圆C:
=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,
是|AF|与|FB|的等比中项.点P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x轴.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.
(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.
同类题2
已知椭圆
的焦点在坐标轴上,对称中心为坐标原点,且过点
和
.
(1)求椭圆
的标准方程;
(2)设直线
交椭圆
于
两点,坐标原点
到直线
的距离为
,求证:
是定值.
同类题3
已知焦点在
轴上的椭圆
,短轴的一个端点与两个焦点构成等腰直角三角形,且椭圆过点
.
(1)求椭圆
的标准方程;
(2) 设
依次为椭圆的上下顶点,动点
满足
,且直线
与椭圆另一个不同于
的交点为
.求证:
为定值,并求出这个定值.
同类题4
已知椭圆
的两个焦点为
、
,且经过
点
,一组斜率为
的直线与椭圆
都相交于不同两点
.
(1)求椭圆
的方程;
(2)证明:线段
的中点都有在同一直线
上;
(3)对于(2)中的直线
,设
与椭圆
交于两点
,试探究椭圆上使
面积为
的点
有几个?证明你的结论.(不必具体求出
点的坐标)
同类题5
已知椭圆
经过点
,
,点
是椭圆的下项点.
(1)求椭圆
的标准方程;
(2)过点
且互相垂直的两直线
,
与直线
分别相交于
,
两点,已知
,求直线
的斜率.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中存在定点满足某条件问题