刷题首页
题库
高中数学
题干
已知椭圆
,四点
中恰有三点在椭圆上.
(1)求椭圆
C
的方程
(2)椭圆
C
上是否存在不同的两点
M,N
关于直线
对称?若存在,请求出直线
MN
的方程,若不存在,请说明理由.
(3)设直线
l
不经过点
且与C相交于
A,B
两点,若直线
与直线
的斜率之和为1,求证直线
l
必过定点,并求出这个定点坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-19 03:24:04
答案(点此获取答案解析)
同类题1
已知椭圆
C
的焦点在
x
轴上,左、右焦点分别为
,焦距等于8,并且经过点
.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)设椭圆
C
的左、右顶点分别为
,点
M
在椭圆上,且异于椭圆的顶点,点
Q
为直线
与
y
轴的交点,若
,求直线
的方程.
同类题2
已知圆
O
经过椭圆
C
:
的两个焦点以及两个顶点,且点
在椭圆
C
上.
求椭圆
C
的方程;
若直线
l
与圆
O
相切,与椭圆
C
交于
M
、
N
两点,且
,求直线
l
的倾斜角.
同类题3
已知椭圆中心在原点,焦点在
x
轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
与椭圆相交于
两点,且坐标原点
到直线
的距离为
,
的大小是否为定值?若是求出该定值,不是说明理由.
同类题4
已知椭圆
的焦点在坐标轴上,对称中心为坐标原点,且过点
和
.
(1)求椭圆
的标准方程;
(2)设直线
交椭圆
于
两点,坐标原点
到直线
的距离为
,求证:
是定值.
同类题5
在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)过点P(1,
).离心率为
.
(1)求椭圆C的方程;
(2)设直线
l
与椭圆C交于A,B两点.
①若直线
l
过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线
l
的斜率为
,试探究OA
2
+ OB
2
是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的直线过定点问题