刷题首页
题库
高中数学
题干
已知椭圆
的左、右焦点分别为F
1
、F
2
,短轴端点分别为A、B,且四边形F
1
AF
2
B是边长为2的正方形
(I)求椭圆的方程;
(II)若C、D分别是椭圆长轴的左、右端点,动点M满足
,连结CM交椭圆于P,证明
为定值(O为坐标原点);
K^S*5U.C#O%
(III)在(II)的条件下,试问在
x
轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由
上一题
下一题
0.99难度 解答题 更新时间:2010-06-07 07:04:50
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率为
,点
,
分别为椭圆
的左、右顶点,点
在
上,且
面积的最大值为
(1)求椭圆
的方程;
(2)设
为
的左焦点,点
在直线
上,过
作
的垂线交椭圆
于
,
两点.证明:直线
平分线段
.
同类题2
如图,椭圆
(a>b>
)的离心率
,左焦点为F,A,B,C为其三个顶点,直线CF与AB交于D,则tan∠BDC的值为
.
同类题3
已知椭圆
的左焦点为
,过点
做
轴的垂线交椭圆于
两点,且
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
短轴的上顶点,直线
不经过
点且与
相交于
两点,若直线
与直线
的斜率的和为
,问:直线
是否过定点?若是,求出这个定点,否则说明理由.
同类题4
已知椭圆的两个焦点
,且椭圆短轴的两个端点与
构成正三角形.
(1)求椭圆的方程;
(2)过点
且与坐标轴不平行的直线
与椭圆交于不同两点
,若在
轴上存在定点
,使
恒为定值,求
的值.
同类题5
已知椭圆
:
,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设
是圆
上任意一点,由
引椭圆
的两条切线
,
,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题