刷题首页
题库
高中数学
题干
已知椭圆
的焦点到短轴的端点的距离为
,离心率为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,过点
作平行于
轴的直线
,交直线
于点
,求证:直线
恒过定点.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-06 02:20:03
答案(点此获取答案解析)
同类题1
已知椭圆
的左焦点
,离心率为
,点
P
为椭圆
E
上任一点,且
的最大值为
.
(1)求椭圆
E
的方程;
(2)若直线
l
过椭圆的左焦点
,与椭圆交于
A
,
B
两点,且
的面积为
,求直线
l
的方程.
同类题2
已知椭圆
的离心率为
,短轴的一个端点到右焦点的距离为2,
(1)试求椭圆
的方程;
(2)若斜率为
的直线
与椭圆
交于
、
两点,点
为椭圆
上一点,记直线
的斜率为
,直线
的斜率为
,试问:
是否为定值?请证明你的结论
同类题3
以(0,
),(0,-
)为焦点,长半轴长为4的椭圆方程为
A.
B.
C.
D.
同类题4
已知椭圆
的长轴长为6,离心率为
.
(1)求椭圆
C
的标准方程;
(2)设椭圆
C
的左、右焦点分别为
,
,左、右顶点分别为
A
,
B
,点
M
,
N
为椭圆
C
上位于
x
轴上方的两点,且
,记直线
AM
,
BN
的斜率分别为
,且
,求直线
的方程.
同类题5
已知椭圆
的右焦点为
,
为短轴的一个端点且
(其中
为坐标原点).
(1)求椭圆的方程;
(2)若
、
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
、
的交点,若存在,求出点
的坐标;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题