刷题首页
题库
高中数学
题干
已知
,椭圆
的离心率为
,直线
与
交于
两点,
长度的最大值为
.
(1)求
的方程;
(2)直线
与
轴的交点为
,当直线
变化(
不与
轴重合)时,若
,求点
的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-08 08:09:35
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中已知椭圆
过点
,其左、右焦点分别为
,离心率为
.
(1)求椭圆
E
的方程;
(2)若
A
,
B
分别为椭圆
E
的左、右顶点,动点
M
满足
,且
MA
交椭圆
E
于点
P
.
(i)求证:
为定值;
(ii)设
PB
与以
PM
为直径的圆的另一交点为
Q
,问:直线
MQ
是否过定点,并说明理由.
同类题2
已知椭圆
过点
,且两焦点与短轴的一个顶点的连线构成等腰直角三角形.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
的直线
交椭圆于
,
两点,试问:是否存在一个定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由.
同类题3
已知椭圆
的离心率是
.
(1)若点
在椭圆上,求椭圆的方程;
(2)若存在过点
的直线
,使点
关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.
同类题4
已知椭圆
的左右焦点分别为
,
,离心率为
.若点
为椭圆上一动点,
的内切圆面积的最大值为
.
(1)求椭圆的标准方程;
(2)过点
作斜率为的动直线交椭圆于
两点,
的中点为
,在
轴上是否存在定点
,使得对于任意
值均有
,若存在,求出点
的坐标,若不存在,说明理由.
同类题5
已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣
,0),且过点D(2,0).
(1)求椭圆C的标准方程;
(2)若已知点A(1,
),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题