- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点分别为
为椭圆上一动点,当
的面积最大时,其内切圆半径为
,设过点
的直线
被椭圆
截得线段
,
当
轴时,
.
(1)求椭圆
的标准方程;
(2)若点
为椭圆
的左顶点,
是椭圆上异于左、右顶点的两点,设直线
的斜率分别为
,若
,试问直线
是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.








当


(1)求椭圆

(2)若点







已知椭圆
,四点
中恰有三点在椭圆上.
(1)求椭圆C的方程
(2)椭圆C上是否存在不同的两点M,N关于直线
对称?若存在,请求出直线MN的方程,若不存在,请说明理由.
(3)设直线l不经过点
且与C相交于A,B两点,若直线
与直线
的斜率之和为1,求证直线l必过定点,并求出这个定点坐标.


(1)求椭圆C的方程
(2)椭圆C上是否存在不同的两点M,N关于直线

(3)设直线l不经过点



已知椭圆
的离心率为
,直线
经过椭圆
的左焦点.
(1)求椭圆
的标准方程;
(2)若直线
与
轴交于点
,
、
是椭圆
上的两个动点,且它们在
轴的两侧,
的平分线在
轴上,
|,则直线
是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.




(1)求椭圆

(2)若直线











已两动圆
和
,把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴交点为
,且曲线
上异于点
的相异两点
、
满足
.
(1)求曲线
的方程;
(2)证明直线
恒经过一定点,并求出此定点的坐标.












(1)求曲线

(2)证明直线

如图,椭圆
:
的离心率为
,设
,
分别为椭圆
的右顶点,下顶点,
的面积为1.

(1)求椭圆
的方程;
(2)已知不经过点
的直线
:
交椭圆于
,
两点,且
,求证:直线
过定点.








(1)求椭圆

(2)已知不经过点







如图,已知椭圆
的离心率是
,一个顶点是
.

(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
是椭圆
上异于点
的任意两点,且
.试问:直线
是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.




(Ⅰ)求椭圆

(Ⅱ)设






已知A(0,1),B(0,﹣1),M(﹣1,0),动点P为曲线C上任意一点,直线PA,PB的斜率之积为
,动直线l与曲线C相交于不同两点Q(x1,y1),R(x2,y2),其中y1>0,y2>0且满足
.
(1)求曲线C的方程;
(2)若直线l与x轴相交于一点N,求N点坐标.


(1)求曲线C的方程;
(2)若直线l与x轴相交于一点N,求N点坐标.
平面直角坐标系
中,已知椭圆
,抛物线
的焦点
是
的一个顶点,设
是
上的动点,且位于第一象限,记
在点
处的切线为
.
(1)求
的值和切线
的方程(用
表示)
(2)设
与
交于不同的两点
,线段
的中点为
,直线
与过
且垂直于
轴的直线交于点
.
(i)求证:点
在定直线上;
(ii)设
与
轴交于点
,记
的面积为
,
的面积为
,求
的最大值.













(1)求



(2)设









(i)求证:点

(ii)设








已知椭圆
的长轴长为4,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右顶点作互相垂直的两条直线
分别交椭圆
于
两点(点
不同于椭圆
的右顶点),证明:直线
过定点
.




(1)求椭圆

(2)过椭圆







