刷题宝
  • 刷题首页
题库 高中数学

题干

设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为 .
(1)求椭圆的方程;
(2)若上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形的面积的最小值.
上一题 下一题 0.99难度 解答题 更新时间:2020-02-06 10:30:15

答案(点此获取答案解析)

同类题1

已知椭圆的离心率为,且经过点.
(1)求椭圆的方程.
(2)过定点的直线与椭圆交于两点.(线不经过点),直线,的斜率为,,求证:为定值.

同类题2

下列说法正确的是(   )
A.椭圆1上任意一点(非左右顶点)与左右顶点连线的斜率乘积为
B.过双曲线1焦点的弦中最短弦长为
C.抛物线y2=2px上两点A(x1,y1).B(x2,y2),则弦AB经过抛物线焦点的充要条件为x1x2
D.若直线与圆锥曲线有一个公共点,则该直线和圆锥曲线相切

同类题3

为半椭圆的左、右两个顶点,为上焦点,将半椭圆和线段合在一起称为曲线
(1)求的外接圆圆心的坐标
(2)过焦点的直线与曲线交于两点,若,求所有满足条件的直线的方程
(3)对于一般的封闭曲线,曲线上任意两点距离的最大值称为该曲线的“直径”,如圆的“直径”就是通常的直径,椭圆的“直径”就是长轴的长,求该曲线的“直径”
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 根据离心率求椭圆的标准方程
  • 椭圆中三角形(四边形)的面积
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)