刷题首页
题库
高中数学
题干
已知椭圆
经过点
,其左焦点为
.过
点的直线
交椭圆于
、
两点,交
轴的正半轴于点
.
(1)求椭圆
的方程;
(2)过点
且与
垂直的直线交椭圆于
、
两点,若四边形
的面积为
,求直线
的方程;
(3)设
,
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 09:03:04
答案(点此获取答案解析)
同类题1
已知椭圆
(
)的离心率为
,点
在椭圆
上,直线
过椭圆的右焦点
且与椭圆相交于
两点.
(1)求
的方程;
(2)在
轴上是否存在定点
,使得
为定值?若存在,求出定点
的坐标,若不存在,说明理由.
同类题2
设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.
同类题3
已知椭圆
(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的方程.
同类题4
已知椭圆
的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4
(1)求椭圆
的方程;
(2)若
是椭圆
的左顶点,经过左焦点
的直线
与椭圆
交于
、
两点,求
与
的面积之差的绝对值的最大值,并求取得最大值时直线
的方程.
为坐标原点)
同类题5
在平面直角坐标系
中,点
到两点
、
的距离之和等于
,设点
的轨迹为
,斜率为
的直线
过点
,且与轨迹
交于
、
两点.
(1)写出轨迹
的方程;
(2)如果
,求
的值;
(3)是否存在直线
,使得在直线
上存在点
,满足
为等边三角形?若存在,求出直线
的方程;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积