- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆中的弦长
- + 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知抛物线E:y2=4x与圆M:(x
3)2+y2=r2(r>0)相交于A,B,C,D四个点.

(1)求r的取值范围;
(2)设四边形ABCD的面积为S,当S最大时,求直线AD与直线BC的交点P的坐标.


(1)求r的取值范围;
(2)设四边形ABCD的面积为S,当S最大时,求直线AD与直线BC的交点P的坐标.
已知椭圆
:
, 过点
的直线
:
与椭圆
交于M、N两点(M点在N点的上方),与
轴交于点E.
(1)当
且
时,求点M、N的坐标;
(2)当
时,设
,
,求证:
为定值,并求出该值;
(3)当
时,点D和点F关于坐标原点对称,若△MNF的内切圆面积等于
,求直线
的方程.







(1)当


(2)当




(3)当



已知椭圆
:
(
)的左,右顶点分别为
,
,长轴长为
,且经过点
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
上异于
,
的任意一点,证明:直线
,
的斜率的乘积为定值;
(3)已知两条互相垂直的直线
,
都经过椭圆
的右焦点
,与椭圆
交于
,
和
,
四点,求四边形
面积的取值范围.







(1)求椭圆

(2)若






(3)已知两条互相垂直的直线










设P为椭圆
1(a>b>0)上任一点,F1、F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为
.
(1)求椭圆的方程;
(2)若直线l:y=kx+m(≠0)与椭圆交于A、B两点,若线段AB的中点C的直线y
x上,O为坐标原点.求△OAB的面积S的最大值.


(1)求椭圆的方程;
(2)若直线l:y=kx+m(≠0)与椭圆交于A、B两点,若线段AB的中点C的直线y

已知椭圆
,定义椭圆
上的点
的“伴随点”为
.
(1)求椭圆
上的点
的“伴随点”
的轨迹方程;
(2)如果椭圆
上的点
的“伴随点”为
,对于椭圆
上的任意点
及它的“伴随点”
,求
的取值范围;
(3)当
,
时,直线
交椭圆
于
,
两点,若点
,
的“伴随点”分别是
,
,且以
为直径的圆经过坐标原点
,求
的面积.





(1)求椭圆



(2)如果椭圆







(3)当













已知椭圆
的中心为原点,焦点在
轴上,左右焦点分别为
,长轴长为
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
的直线
与椭圆
交于点
,若
,求
的面积.





(Ⅰ)求椭圆

(Ⅱ)过






设椭圆
:
的离心率与双曲线
的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆
的方程;
(2)若直线
交椭圆
于
,
两点,
为椭圆
上一点,求
面积的最大值.



(1)求椭圆

(2)若直线






